Muutke küpsiste eelistusi

E-raamat: Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows: A GAMM-Workshop

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The GAMM-Commi ttee for Numerical Methods in Fluid Mechanics (GAMM-Fachausschuss fur Numerische Methoden in der Stromungsmechanik) has sponsored the organization of a GAMM Workshop dedicated to the numerical simulation of three- dimensional incompressible unsteady viscous laminar flows to test Navier-Stokes solvers. The Workshop was held in Paris from June 12th to June 14th, 1991 at the Ecole Nationale Superieure des Arts et Metiers. Two test problems were set up. The first one is the flow in a driven-lid parallelepipedic cavity at Re = 3200 . The second problem is a flow around a prolate spheroid at incidence. These problems are challenging as fully transient solutions are expected to show up. The difficulties for meaningful calculations come from both space and temporal discretizations which have to be sufficiently accurate to resol ve detailed structures like Taylor-Gortler-like vortices and the appropriate time development. Several research teams from academia and industry tackled the tests using different formulations (veloci ty-pressure, vortici ty- velocity), different numerical methods (finite differences, finite volumes, finite elements), various solution algorithms (splitting, coupled, ...), various solvers (direct, iterative, semi-iterative) with preconditioners or other numerical speed-up procedures. The results show some scatter and achieve different levels of efficiency. The Workshop was attended by about 25 scientists and drove much interaction between the participants. The contributions in these proceedings are presented in alphabetical order according to the first author, first for the cavi ty problem and then for the prolate spheroid problem. No definite conclusions about benchmark solutions can be drawn.

Muu info

Springer Book Archives
Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar flows: The Test Problems.- The Challenges of the Numerical Integration of the Transient Three-Dimensional Navier-Stokes Equations.- Prediction of Three-Dimensional Unsteady Lid-Driven Cavity Flow.- Direct Simulation of Unsteady Flow in a Three-Dimensional Lid-Driven Cavity.- A Fully Implicit and Fully Coupled Approach for the Simulation of Three-Dimensional Unsteady Incompressible Flows.- Numerical Simulation of a Three-Dimensional Lid-Driven Cavity Flow.- Velocity-Vorticity Simulation of Unsteady 3-D Viscous Flow Within a Driven Cavity.- A 3-D Driven Cavity Flow Simulation with N3S Code.- Numerical Simulation of Three-Dimensional Unsteady Flow in a Cavity.- A 3-D Driven Cavity Flow Simulation with PHOENICS Code.- Multigrid and ADI Techniques to Solve Unsteady 3-D Viscous Flow in Velocity-Vorticity Formulation.- Computation of 3-D Unsteady Laminar Viscous Flow Over a Prolate Spheroid at Incidence by a Collocated Finite Difference Method.- Multidomain Technique for 3-D Incompressible Unsteady Viscous Laminar Flow Around Prolate Spheroid.- Final Synthesis and Concluding Remarks.