Muutke küpsiste eelistusi

E-raamat: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations

  • Formaat - PDF+DRM
  • Hind: 147,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a theoretical proof) of additionally providing accurate quantitative information.

The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form -u=f(x,u,u) with Dirichlet boundary conditions. Here, by verified computation is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense.

In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of theauthors methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Arvustused

Each chapter of the book is written in an excellent, easy-to-understand way, both in terms of items, proofs, and codes. The reader himself can easily check the simplicity and correctness of the codes. (Rózsa Horváth-Bokor, zbMATH 1462.65004, 2021)

1. Basic principle of the verification.-
2. Newton-type approaches in finite dimension.-
3. Infinite dimensional Newton-type method.-
4. Applications to the computer-assisted proof in analysis.-
5. Evolutional equations.-
6. Eigenvalue enclosures for selfadjoint operators.-
7. Abstract formulation F(u) = 0, and the basic theorem.-
8. Strong solutions for second-order problems.-
9. Weak solutions for second-order problems.-
10. Weak solutions for fourth-order problems.-
11. Parameter-dependent problems.-
12. Non-selfadjoint eigenvalue problems.-
13. Some other methods.