Muutke küpsiste eelistusi

E-raamat: Odour Detection By Mobile Robots

(Monash Univ, Australia)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 28,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Robots can grasp, walk, see, and even understand verbal commands and respond to them, but little research has been done to provide robots with a sense of smell. This book reviews contemporary research being done to give robots the ability to generate, detect, and discriminate between odors. Russell (Monash U., Australia) describes a number of ways creatures, from humans to insects, use odor to mediate behavior, and how this would be implemented in a robot, including the associated robot control algorithms necessary to incorporate such detection technology into a variety of systems. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Arvustused

"The book is useful for roboticists and might be of interest as an illustration on how to tackle an example of applied multidisciplinary research." Mathematics Abstracts

Preface vii
Introduction
1(4)
Chemicals as a Medium for Transferring Information
2(3)
References
4(1)
Chemical Sensing in Nature
5(12)
The Human Chemical Senses of Taste and Olfaction
6(6)
The Sense of Taste
6(2)
The Trigeminal Sense
8(1)
The Olfactory Sense
8(4)
Classification of Chemical Stimuli
12(5)
References
14(3)
Examples of Biological Chemotaxis
17(16)
Some Biological Instances of Chemotaxis
18(15)
Chemotaxis by E. coli
18(1)
The Chemical Sensors of E. coli
18(1)
Bacterium Mobility
19(1)
The Chemotaxis Algorithm
19(3)
Locating the Source of a Waterborne Chemical Plume
22(1)
Trail Following by Ants
22(2)
Locating the Source of an Airborne Odour Plume
24(1)
The Silkworm Moth's Sensors
25(1)
Acquisition and Tracking of the Odour Plume
25(2)
Trail Optimisation by Ants
27(2)
Improving the Efficiency of the Search for Pollen and Nectar
29(2)
References
31(2)
Odour Sensing Technology
33(16)
Tin Oxide Sensors
34(3)
The Quartz Crystal Microbalance
37(4)
Conducting Polymer Sensors
41(3)
Electroantennogram
44(5)
References
46(3)
Odour Discrimination
49(20)
The Model of an Odour Discrimination System
49(2)
Data processing
51(5)
Preprocessing
52(1)
Linearisation
52(1)
Normalisation
53(3)
Display of Odour Data
56(4)
The Polar Rose Plot
56(1)
Hierarchical Cluster Analysis
57(1)
The Karhunen-Loeve transformation
58(2)
Classification
60(6)
Classification by artificial neural network
61(1)
The Delta Rule
62(2)
Back-Propagation
64(2)
A Robotic Application of Electronic Noses at the University of Santiago
66(3)
References
67(2)
Airflow and the Movement of Odour
69(14)
Diffusion
70(5)
Turbulent Flow
75(2)
Visualising airflow
77(6)
Chemical Smoke
77(1)
Smoke Visibility
78(1)
Fluid Flow Simulation
78(4)
References
82(1)
Broadcast Chemical Signals
83(34)
Tracking the Source of Smooth Chemical Gradients
84(7)
Simulations of Gradient Tracking with a Single Sensor
84(1)
The E coli-Based Algorithm
84(1)
Planaria-Based Alternating Turn Algorithm
85(1)
A Robotic Implementation of the E. coli Chemotaxis Algorithm
86(3)
Tracking a Chemical Gradient Using Two Sensors
89(2)
Two Sensors for Odour-Source Location
91(6)
A Combined Odour and Wind Direction Sensor
92(1)
First Algorithm-the Step-by-Step Method
93(1)
Second Algorithm-the Zigzag Method
94(1)
The Active Sampling Sensor
95(2)
A Robotic System to Locate Chemical Leaks
97(10)
Phase 1: Plume Acquisition
98(2)
Phase 2: Following the Odour Plume
100(1)
Phase 3: Circumnavigating Obstacles
100(2)
Phase 4: Terminating Conditions
102(5)
A Robot to Mimic the Pheromone Tracking Capability of the Silkworm Moth
107(5)
Chemical Sensing by an Underwater Robot
112(2)
Robolobster
112(2)
Conclusion
114(3)
References
115(2)
Chemical Markings as Signals
117(36)
Conventional Trail Techniques
118(3)
Wire Guide
118(1)
Optical and Ultraviolet Trails
119(2)
Magnetic Guide Paths
121(1)
Intelligent Data Carriers
121(1)
Robotic Applications for Odour Trails
122(4)
The Repellent Marking Algorithm
123(1)
The Pathfinder Algorithm
124(1)
The Virtual Umbilical Algorithm
125(1)
Choice of Trail Chemical
126(3)
A Sensor for Camphor Trails
129(5)
Trail Tracking Algorithms
134(16)
Trail Tracking with a Single Sensor
134(1)
The RAT Robot
135(6)
Trail Tracking with Dual Sensors
141(1)
The Robot Vehicle
141(3)
Control Algorithm
144(1)
Results
145(3)
Chemical Trail Following by the Robot Vehicle Sauro
148(2)
Conclusion
150(3)
References
150(3)
Coding Information into Trails
153(18)
Trail Polarisation
153(5)
Lateral Trail Polarisation
154(1)
Longitudinal Trail Polarisation
155(1)
A Practical Demonstration of Trail Polarisation
156(2)
Pseudo-Random Coded Tracks
158(3)
Coding Larger Quantities of Information into a SLNM Trail
161(5)
Error Detection when Reading a UPC Symbol
162(4)
A Robot System to Lay and Detect Coded Trails
166(5)
References
169(2)
Heat as a Short-Lived Navigational Marker
171(24)
Laying Heat Trails
172(3)
Radiant Heating
172(2)
Heating by Conduction
174(1)
Detecting Heat Trails
175(5)
The Scanning Infrared Sensor
177(3)
Kalman Filter Based Control
180(10)
A Mathematical Model of the Thermal Sensor
181(3)
Track Following Control Problem
184(1)
Extended Kalman Filter Formulation
184(2)
Deriving the Robot Motion From the Kalman Filter State
186(4)
Sensor Scanning by Rapid Robot Movement
190(2)
Conclusions
192(3)
References
192(3)
Future Prospects for Robotic Odour Sensing
195(2)
Appendix. The RAT Robot 197(18)
A.1 Wheel Drive System
199(3)
A.2 Standard Sensors and Output Devices
202(2)
A.3 Power Conditioning
204(1)
A.4 Support Circuits and RS232 Communications
205(7)
A.5 List of Components for the RAT Robot
212(3)
Index 215