Preface |
|
xi | |
|
|
1 | (20) |
|
|
2 | (1) |
|
1.2 Overview of omic data |
|
|
2 | (6) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
1.2.1.3 Sequencing methods |
|
|
4 | (1) |
|
1.2.2 Genomic data for other structural variants |
|
|
5 | (1) |
|
1.2.3 Transcriptomic data |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (4) |
|
1.3.1 Genome-wide association studies |
|
|
9 | (1) |
|
1.3.2 Whole transcriptome profiling |
|
|
10 | (1) |
|
1.3.3 Epigenome-wide association studies |
|
|
10 | (1) |
|
1.3.4 Exposome-wide association studies |
|
|
11 | (1) |
|
1.4 Publicly available resources |
|
|
12 | (4) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
16 | (1) |
|
1.5.2 Omic data in Bioconductor |
|
|
17 | (1) |
|
|
18 | (3) |
|
|
21 | (28) |
|
|
21 | (1) |
|
2.2 Reproducibility: The case for public data repositories |
|
|
21 | (1) |
|
|
22 | (8) |
|
|
30 | (7) |
|
|
37 | (3) |
|
|
40 | (5) |
|
|
45 | (4) |
|
3 Dealing with omic data in Bioconductor |
|
|
49 | (26) |
|
|
49 | (1) |
|
|
50 | (2) |
|
|
52 | (1) |
|
3.4 SummarizedExperirnent |
|
|
53 | (2) |
|
|
55 | (7) |
|
3.6 RangedSummarizedExperiment |
|
|
62 | (2) |
|
|
64 | (3) |
|
|
67 | (2) |
|
|
69 | (6) |
|
4 Genetic association studies |
|
|
75 | (58) |
|
|
75 | (1) |
|
4.2 Genetic association studies |
|
|
76 | (18) |
|
|
76 | (1) |
|
|
77 | (2) |
|
4.2.3 Single SNP analysis |
|
|
79 | (4) |
|
4.2.4 Hardy-Weinberg equilibrium |
|
|
83 | (1) |
|
4.2.5 SNP association analysis |
|
|
84 | (7) |
|
4.2.6 Gene × environment and gene × gene interactions |
|
|
91 | (3) |
|
|
94 | (8) |
|
4.3.1 Linkage disequilibrium heatmap plots |
|
|
95 | (3) |
|
4.3.2 Haplotype estimation |
|
|
98 | (1) |
|
4.3.3 Haplotype association |
|
|
98 | (1) |
|
4.3.4 Sliding window approach |
|
|
99 | (3) |
|
|
102 | (5) |
|
4.5 Genome-wide association studies |
|
|
107 | (19) |
|
4.5.1 Quality control of SNPs |
|
|
109 | (1) |
|
4.5.2 Quality control of individuals |
|
|
110 | (6) |
|
4.5.3 Population ancestry |
|
|
116 | (1) |
|
4.5.4 Genome-wide association analysis |
|
|
117 | (2) |
|
4.5.5 Adjusting for population stratification |
|
|
119 | (7) |
|
4.6 Post-GWAS visualization and interpretation |
|
|
126 | (7) |
|
4.6.1 Genome-wide associations for imputed data |
|
|
129 | (4) |
|
5 Genomic variant studies |
|
|
133 | (66) |
|
|
133 | (1) |
|
|
134 | (19) |
|
|
136 | (17) |
|
5.3 Single CNV association |
|
|
153 | (16) |
|
5.3.1 Inferring copy number status from signal data |
|
|
157 | (4) |
|
5.3.2 Measuring uncertainty of CNV calling |
|
|
161 | (1) |
|
5.3.3 Assessing the association between CNVs and traits |
|
|
161 | (1) |
|
5.3.3.1 Modeling association |
|
|
162 | (2) |
|
5.3.3.2 Global test of associations |
|
|
164 | (2) |
|
5.3.4 Whole genome CNV analysis |
|
|
166 | (3) |
|
|
169 | (19) |
|
5.4.1 Calling genetic mosaicisms |
|
|
169 | (9) |
|
5.4.2 Calling the loss of chromosome Y |
|
|
178 | (10) |
|
5.5 Polymorphic inversions |
|
|
188 | (11) |
|
5.5.1 Inversion detection |
|
|
189 | (2) |
|
|
191 | (4) |
|
5.5.3 Inversion association |
|
|
195 | (4) |
|
6 Addressing batch effects |
|
|
199 | (12) |
|
|
199 | (1) |
|
|
200 | (6) |
|
|
206 | (5) |
|
|
211 | (34) |
|
|
211 | (1) |
|
|
212 | (13) |
|
|
212 | (4) |
|
|
216 | (4) |
|
7.2.3 Differential expression |
|
|
220 | (5) |
|
7.3 Next generation sequencing data |
|
|
225 | (20) |
|
|
229 | (6) |
|
|
235 | (1) |
|
7.3.3 Differential expression |
|
|
235 | (10) |
|
|
245 | (18) |
|
|
245 | (1) |
|
8.2 Epigenome-wide association studies |
|
|
245 | (1) |
|
|
246 | (1) |
|
8.4 Differential methylation analysis |
|
|
247 | (7) |
|
8.5 Methylation analysis of a target region |
|
|
254 | (3) |
|
8.6 Epigenomic and transcriptomic visualization results |
|
|
257 | (3) |
|
8.7 Cell proportion estimation |
|
|
260 | (3) |
|
|
263 | (28) |
|
|
263 | (1) |
|
|
264 | (2) |
|
|
265 | (1) |
|
9.3 Exposome characterization |
|
|
266 | (9) |
|
9.4 Exposome-wide association analyses |
|
|
275 | (3) |
|
9.5 Association between exposomic and other omic data |
|
|
278 | (13) |
|
9.5.1 Exposome-transcriptome data analysis |
|
|
279 | (8) |
|
9.5.2 Exposome-methylome data analysis |
|
|
287 | (4) |
|
|
291 | (24) |
|
|
291 | (1) |
|
10.2 Enrichment analysis and statistical power |
|
|
292 | (1) |
|
10.3 Gene set annotations |
|
|
293 | (3) |
|
10.4 Over representation analysis |
|
|
296 | (11) |
|
10.5 Overlap with functional genomic regions |
|
|
307 | (3) |
|
10.6 Chemical and environmental enrichment |
|
|
310 | (5) |
|
11 Multiomic data analysis |
|
|
315 | (38) |
|
|
315 | (1) |
|
|
316 | (1) |
|
11.3 Massive pair-wise analyses between omic datasets |
|
|
316 | (6) |
|
11.4 Multiple-omic data integration |
|
|
322 | (31) |
|
11.4.1 Multi-staged analysis |
|
|
323 | (1) |
|
11.4.1.1 Genomic variation analysis |
|
|
323 | (5) |
|
11.4.2 Domain-knowledge approach |
|
|
328 | (4) |
|
11.4.3 Meta-dimensional analysis |
|
|
332 | (1) |
|
11.4.3.1 Principal component analysis |
|
|
332 | (4) |
|
11.4.3.2 Sparse principal component analysis |
|
|
336 | (3) |
|
11.4.3.3 Canonical correlation and coinertia analyses |
|
|
339 | (6) |
|
11.4.3.4 Regularized generalized canonical correlation |
|
|
345 | (8) |
Bibliography |
|
353 | (18) |
Index |
|
371 | |