Muutke küpsiste eelistusi

E-raamat: Four Open Questions for the N-Body Problem

(University of California, Santa Cruz)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Dec-2024
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009200561
  • Formaat - PDF+DRM
  • Hind: 43,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Dec-2024
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009200561

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Examining the classical N-body problem, this book demonstrates that the field is still vibrant, exploring four of the big open questions. It describes the progress made, emphasizing open areas of research. For mathematicians, physicists, and astronomerscurious about the N-body problem, this book presents the state of the art"--

The N-body problem has been investigated since Isaac Newton, however vast tracts of the problem remain open. Showcasing the vibrancy of the problem, this book describes four open questions and explores progress made over the last 20 years. After a comprehensive introduction, each chapter focuses on a different open question, highlighting how the stance taken and tools used vary greatly depending on the question. Progress on question one, 'Are the central configurations finite?', uses tools from algebraic geometry. Two, 'Are there any stable periodic orbits?', is dynamical and requires some understanding of the KAM theorem. The third, 'Is every braid realised?', requires topology and variational methods. The final question, 'Does a scattered beam have a dense image?', is quite new and formulating it precisely takes some effort. An excellent resource for students and researchers of mathematics, astronomy, and physics interested in exploring state-of-the-art techniques and perspectives on this classical problem.

Examining the classical N-body problem, this book demonstrates that the field is still vibrant, exploring four of the big open questions. It describes the progress made, emphasizing open areas of research. For mathematicians, physicists, and astronomers curious about the N-body problem, this book presents the state of the art.

Muu info

Re-examine the classical N-body problem and explore state-of-the-art research into four of its big open questions.
Part I. Tour, Problem, and Structures: -1. A tour of solutions;
0. The
problem and its structure; Part II. The Questions:
1. Are the central
configurations finite?;
2. Are there any stable periodic orbits?;
3. Is every
braid realized?;
4. Does a scattered beam have a dense image?; Appendices: A.
Geometric mechanics; B. Reduction and Poisson brackets; C. The three-body
problem and the shape sphere; D. The orthogonal group and its Lie algebra; E.
Braids, homotopy and homology; F. The JacobiMaupertuis metric; G.
Regularizing binary collisions; H. One-degree of freedom and central
scattering; References; Index.
Richard Montgomery is Professor Emeritus of Mathematics at University of California, Santa Cruz. He is a co-rediscoverer of the surprisingly stable figure eight orbit for the classical three-body problem. His work on the N-body problem uses variational, topological, and differential geometric methods to say new things about this old problem.