Muutke küpsiste eelistusi

E-raamat: Open Resonator Microwave Sensor Systems for Industrial Gauging: A practical design approach

(University of Akron, USA)
  • Formaat: PDF+DRM
  • Sari: Control, Robotics and Sensors
  • Ilmumisaeg: 15-May-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785611414
  • Formaat - PDF+DRM
  • Hind: 214,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Control, Robotics and Sensors
  • Ilmumisaeg: 15-May-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785611414

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Open resonator microwave sensors allow accurate sensing, monitoring and measurement of properties such as dimension and moisture content in materials including dielectrics, rubber, polymers, paper, fabrics and wood veneers. This book presents a coherent and entirely practical approach to the design and use of systems based on these sensors in industrial environments, showing how they can provide meaningful, accurate and industrially-viable methods of gauging.



Starting with an introduction to the underlying theory, the book proceeds through the entire design process, including simulation, experimentation, prototyping and testing of a complete system. It takes the reader through the development of a particular sensor, stressing the parameters that should be optimized and emphasizing practical aspects of a sensor and of its use. Two extended application case studies on the use of these systems for rubber thickness and fabric coating monitoring are included.
Preface xi
1 Introduction to microwaves
1(12)
1.1 General
1(1)
1.2 The microwave domain
1(3)
1.3 History
4(1)
1.4 Advantages and disadvantages of microwaves for testing, measurements, and gauging
5(3)
1.5 Energy associated with microwaves
8(1)
1.6 Properties of fields at high frequencies
9(2)
1.7 Microwaves and mechanics
11(1)
1.8 Instrumentation and instruments
11(2)
2 Transmission lines and transmission line resonators
13(84)
2.1 Introduction
13(2)
2.2 The transmission line
15(2)
2.3 Transmission line parameters
17(2)
2.3.1 Calculation of line parameters
18(1)
2.4 The transmission line equations
19(6)
2.4.1 Time-domain transmission line equations
24(1)
2.5 Types of transmission lines
25(4)
2.5.1 The lossless transmission line
25(1)
2.5.2 The long transmission line
26(1)
2.5.3 The distortionless transmission line
27(1)
2.5.4 The low-resistance transmission line
28(1)
2.6 The field approach to transmission lines
29(3)
2.7 Finite transmission lines
32(16)
2.7.1 The load reflection coefficient
33(2)
2.7.2 Line impedance and the generalized reflection coefficient
35(2)
2.7.3 The lossless, terminated transmission line
37(5)
2.7.4 The lossless, matched transmission line
42(1)
2.7.5 The lossless, shorted transmission line
42(1)
2.7.6 The lossless, open transmission line
43(2)
2.7.7 The lossless, resistively loaded transmission line
45(3)
2.8 Power relations on a general transmission line
48(1)
2.9 Passive transmission line circuits
49(12)
2.9.1 Impedance matching
50(2)
2.9.2 Power dividers
52(4)
2.9.3 Directional couplers
56(1)
2.9.4 Antennas and probes
57(2)
2.9.5 Attenuators
59(2)
2.9.6 Other circuits
61(1)
2.10 Transmission line resonators
61(9)
2.10.1 The concept of resonance
62(1)
2.10.2 The series RLC circuit
62(5)
2.10.3 Parallel resonant circuit
67(3)
2.11 Series and parallel transmission line resonators
70(13)
2.11.1 Short-circuited λ/2 transmission line resonator
71(2)
2.11.2 Open-circuited λ/2 transmission line resonator
73(2)
2.11.3 Additional properties of transmission line resonators
75(3)
2.11.4 Tapped transmission line resonators
78(5)
2.12 The Smith chat
83(14)
Bibliography
93(4)
3 Planar transmission lines and coupled structures
97(34)
3.1 Introduction
97(1)
3.2 Planar transmission lines: the stripline
98(7)
3.2.1 Coupled transmission lines
100(5)
3.3 Waveguides and cavity resonators
105(12)
3.3.1 TE propagation in parallel plate waveguides
108(1)
3.3.2 TM propagation in parallel plate waveguides
109(1)
3.3.3 Rectangular waveguides
109(2)
3.3.4 TM modes in rectangular waveguides
111(1)
3.3.5 TE modes in rectangular waveguides
112(1)
3.3.6 Cavity resonators
113(1)
3.3.7 TM modes in cavity resonators
114(1)
3.3.8 TE modes in cavity resonators
115(1)
3.3.9 Energy relations in a cavity resonator
115(2)
3.4 Coupled stripline resonators
117(2)
3.5 Resonant cavity perturbation
119(12)
3.5.1 Whole cavity perturbation, lossless media
120(3)
3.5.2 Cavity perturbation by small, lossless material samples
123(1)
3.5.3 Cavity perturbation, lossy media
124(4)
Bibliography
128(3)
4 Microwave measurements
131(50)
4.1 Introduction
131(2)
4.2 N-Port networks
133(12)
4.2.1 The scattering matrix and S-parameters
136(2)
4.2.2 Generalized scattering parameters
138(1)
4.2.3 Some properties of S-parameters
139(1)
4.2.4 The ABCD-parameters and the transmission matrix
139(2)
4.2.5 Relations between the various parameters
141(1)
4.2.6 Shift of reference plane
141(2)
4.2.7 Transformations between parameters
143(2)
4.3 Use of the S-parameters for practical measurements
145(4)
4.3.1 Matching of loads
146(1)
4.3.2 Detection of resonance
146(1)
4.3.3 Determination of losses
147(2)
4.4 Other measurements
149(6)
4.4.1 Frequency measurements
149(3)
4.4.2 Wavemeters
152(2)
4.4.3 Power measurements
154(1)
4.5 Power sensors and detectors
155(6)
4.5.1 Diode power sensors
155(1)
4.5.2 Thermistors, bolometers, and thermocouples
156(4)
4.5.3 Measurement of power density
160(1)
4.6 Measurement of Q-factor of resonators
161(6)
4.6.1 Q-Factors for series resonance
163(1)
4.6.2 Q-Factors for parallel resonance
164(3)
4.7 Measurement of impedance
167(1)
4.8 Measurement of permittivity and loss tangent
167(2)
4.9 Waveguide method of measurement
169(3)
4.10 Cavity perturbation method
172(3)
4.11 Other methods
175(6)
Bibliography
177(4)
5 Design of sensors for rubber thickness and fabric-coating monitoring
181(52)
5.1 Introduction
181(1)
5.2 Sensor design for fabric coatings
182(24)
5.2.1 Sensor modifications and optimization
192(3)
5.2.2 Shielding of the sensor
195(3)
5.2.3 Simulation and optimization
198(3)
5.2.4 Sensitivity to motion of the plates
201(1)
5.2.5 Mechanical design
202(4)
5.3 Sensor design for rubber thickness sensing
206(19)
5.3.1 Simulation and optimization
214(11)
5.4 Alternative sensing strategies
225(8)
5.4.1 Capacitive sensors
225(2)
5.4.2 Reflection and transmission sensors
227(4)
Further reading
231(2)
6 Evaluation of the sensors
233(30)
6.1 Introduction
233(1)
6.2 Empty sensor tests
234(1)
6.3 Laboratory tests
235(3)
6.4 Online testing results
238(12)
6.5 Performance evaluation
250(5)
6.5.1 Effect of distance from antenna tips to center plate
250(2)
6.5.2 Effect of flutter
252(2)
6.5.3 Effect of cell offset
254(1)
6.6 Calibration of the sensor
255(8)
7 Implementation and testing
263(22)
7.1 Introduction
263(1)
7.2 The mechanical system
263(7)
7.3 Evaluation of the mechanical system
270(4)
7.4 Calibration
274(6)
7.5 Compensation for environmental conditions
280(5)
7.5.1 Compensation method
282(3)
8 The network analyzer
285(40)
8.1 Introduction
285(1)
8.2 What is a network analyzer?
285(7)
8.2.1 Scalar and vector network analyzers
289(3)
8.3 The measurement process
292(19)
8.3.1 Calibration
293(3)
8.3.2 Measurements
296(15)
8.4 Measurement of complex permittivity and loss tangent
311(8)
8.4.1 Resonant methods
311(4)
8.4.2 Transmission line methods
315(3)
8.4.3 Measurements in space
318(1)
8.5 Integration of network analyzers in designs
319(6)
Further reading
321(4)
Appendix A Electromagnetic radiation safety
325(6)
A.1 Introduction
325(1)
A.2 Field measurements
326(3)
A.3 Conclusions
329(2)
Bibliography
329(2)
Appendix B Material properties
331(8)
B.1 Introduction
331(1)
B.2 Measurements
331(3)
B.3 Effect of humidity and temperature
334(5)
Bibliography
337(2)
Appendix C The finite-difference time-domain (FDTD) method
339(16)
C.1 The finite difference time domain equations
339(6)
C.2 Boundary conditions
345(1)
C.3 Near-to-far-field transformation
346(1)
C.4 Modeling material interfaces
346(2)
C.5 Inclusion of sources
348(7)
Bibliography
351(4)
Appendix D Selected elements of electromagnetics
355(28)
D.1 Maxwell's equations
355(4)
D.1.1 Maxwell's equations: the time-harmonic form
356(1)
D.1.2 Source-free equations
357(1)
D.1.3 Interface conditions
358(1)
D.2 The electromagnetic wave equation and its solution
359(4)
D.2.1 Time-harmonic wave equations
359(1)
D.2.2 Solution of the wave equation
360(1)
D.2.3 Solution for uniform plane waves in lossless media
360(3)
D.3 Propagation of plane waves in materials
363(8)
D.3.1 Propagation of plane waves in lossy dielectrics
363(5)
D.3.2 Propagation of plane waves in low-loss dielectrics
368(1)
D.3.3 Propagation of plane waves in conductors or high-loss dielectrics
369(2)
D.4 The Poynting theorem and electromagnetic power
371(5)
D.4.1 The Poynting theorem in the time domain
371(2)
D.4.2 The complex Poynting vector
373(3)
D.5 Reflection, transmission, and refraction of plane waves
376(7)
D.5.1 Oblique incidence on a dielectric interface: perpendicular polarization
377(3)
D.5.2 Oblique incidence on a dielectric interface: parallel polarization
380(2)
D.5.3 Reflection and transmission on dielectric interfaces: normal incidence
382(1)
D.5.4 Reflection and transmission on perfect conductors
382(1)
Further reading 383(2)
Index 385
Nathan Ida is Distinguished Professor of Electrical and Computer Engineering at the University of Akron USA. He is the author of five previous books in the area of Electromagnetics and over 250 journal and conference papers. He is a Fellow of the IEEE, IET, the Applied Computational Electromagnetics Society and the American Society for Nondestructive Testing. He is active in numerous conferences and symposia that emphasize interdisciplinary research and practical applications.