Muutke küpsiste eelistusi

E-raamat: Operads in Algebra, Topology and Physics

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

'Operads are powerful tools, and this is the book in which to read about them' - ""Bulletin of the London Mathematical Society"". Operads are mathematical devices that describe algebraic structures of many varieties and in various categories. Operads are particularly important in categories with a good notion of 'homotopy', where they play a key role in organizing hierarchies of higher homotopies. Significant examples from algebraic topology first appeared in the sixties, although the formal definition and appropriate generality were not forged until the seventies. In the nineties, a renaissance and further development of the theory were inspired by the discovery of new relationships with graph cohomology, representation theory, algebraic geometry, derived categories, Morse theory, symplectic and contact geometry, combinatorics, knot theory, moduli spaces, cyclic cohomology, and, last but not least, theoretical physics, especially string field theory and deformation quantization. The book contains a detailed and comprehensive historical introduction describing the development of operad theory from the initial period when it was a rather specialized tool in homotopy theory to the present when operads have a wide range of applications in algebra, topology, and mathematical physics. Many results and applications currently scattered in the literature are brought together here along with new results and insights. The basic definitions and constructions are carefully explained and include many details not found in any of the standard literature.
Preface ix
Part I
1(34)
Introduction and History
3(32)
A prehistory
3(1)
Lazard's formal group laws
3(1)
PROPs and PACTs
4(1)
Non-Σ operads and operads
5(2)
Theories
7(1)
Tree operads
8(1)
A∞-spaces and loop spaces
9(3)
E∞-spaces and iterated loop spaces
12(1)
A∞-algebras
13(1)
Partiality and A∞-categories
14(3)
L∞-algebras
17(2)
C∞-algebras
19(1)
n-ary algebras
19(1)
Operadic bar construction and Koszul duality
20(1)
Cyclic operads
21(1)
Moduli spaces and modular operads
22(1)
Operadic interpretation of closed string field theory
23(3)
From topological operads to dg operads
26(1)
Homotopy invariance in algebra and topology
27(2)
Formality, quantization and Deligne's conjecture
29(2)
Insertion operads
31(4)
Part II
35(292)
Operads in a Symmetric Monoidal Category
37(56)
Symmetric monoidal categories
37(3)
Operads
40(5)
Pseudo-operads
45(1)
Operad algebras
46(4)
The pseudo-operad of labeled rooted trees
50(6)
The Stasheff associahedra
56(4)
Operads defined in terms of arbitrary finite sets
60(7)
Operads as monoids
67(4)
Free operads and free pseudo-operads
71(13)
Collections, K-collections and K-operads
84(2)
The GK-construction
86(2)
Triples
88(5)
Topology - Review of Classical Results
93(28)
Iterated loop spaces
93(1)
Recognition
94(2)
The bar construction: theme and variations
96(1)
Approximation
97(4)
Γ-spaces
101(1)
Homology operations
102(4)
The linear isometries operad and infinite loop spaces
106(3)
W-construction
109(3)
Algebraic structures up to strong homotopy
112(9)
Algebra
121(82)
The cobar complex of an operad
121(16)
Quadratic operads
137(8)
Koszul operads
145(4)
A complex relating the two conditions for a Koszul operad
149(5)
Trees with levels
154(4)
The spectral sequences relating N(P) and C(P)
158(7)
Coalgebras and coderivations
165(8)
The homology and cohomology of operad algebras
173(9)
The pre-Lie structure on Coder (FcP(X))
182(4)
Application: minimal models and homotopy algebras
186(17)
Geometry
203(44)
Configuration spaces operads and modules
203(9)
Deligne-Knudsen-Mumford compactification of moduli spaces
212(6)
Compactification of configuration spaces of points in Rn
218(16)
Compactification of configurations of points in a manifold
234(13)
Generalization of Operads
247(80)
Cyclic operads
247(11)
Application: cyclic (co)homology
258(9)
Modular operads
267(12)
The Feynman transform
279(11)
Application: graph complexes
290(14)
Application: moduli spaces of surfaces of arbitrary genera
304(8)
Application: closed string field theory
312(15)
Epilog 327(2)
Bibliography 329(10)
Glossary of notations 339(6)
Index 345