Preface |
|
xiii | |
Acknowledgments |
|
xv | |
|
PART ONE COMMUTATIVE THEORY |
|
|
1 | (2) |
|
1 The Origins of Operator-Theoretic Approaches to Function Theory |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (5) |
|
1.3 Operators on Hilbert Space |
|
|
9 | (3) |
|
|
12 | (1) |
|
1.5 Hardy Space and the Unilateral Shift |
|
|
13 | (2) |
|
1.6 Invariant Subspaces of the Unilateral Shift' |
|
|
15 | (1) |
|
1.7 Von Neumann's Theory of Spectral Sets |
|
|
16 | (3) |
|
1.8 The Schur Class and Spectral Domains |
|
|
19 | (2) |
|
1.9 The Sz.-Nagy Dilation Theorem |
|
|
21 | (1) |
|
1.10 Ando's Dilation Theorem |
|
|
22 | (1) |
|
1.11 The Sz.-Nagy--Foias Model Theory |
|
|
23 | (2) |
|
1.12 The Sarason Interpolation Theorem |
|
|
25 | (5) |
|
|
30 | (3) |
|
2 Operator Analysis on D: Model Formulas, Lurking Isometries, and Positivity Arguments |
|
|
33 | (1) |
|
|
33 | (1) |
|
2.2 A Model Formula for (D) |
|
|
33 | (4) |
|
2.3 Reproducing Kernel Hilbert Spaces |
|
|
37 | (2) |
|
|
39 | (5) |
|
2.5 The Network Realization Formula (Scalar Case) via Model Theory |
|
|
44 | (8) |
|
2.6 Interpolation via Model Theory |
|
|
52 | (4) |
|
2.7 The Muntz--Szasz Interpolation Theorem |
|
|
56 | (5) |
|
|
61 | (9) |
|
|
70 | (1) |
|
3 Further Development of Models on the Disc |
|
|
71 | (1) |
|
3.1 A Model Formula for LB(H,K)(D) |
|
|
71 | (3) |
|
3.2 Lurking Isometries Revisited |
|
|
74 | (1) |
|
3.3 The Network Realization Formula |
|
|
75 | (3) |
|
3.4 Tensor Products of Hilbert Spaces |
|
|
78 | (1) |
|
3.5 Tensor Products of Operators |
|
|
79 | (2) |
|
3.6 Realization of Rational Matrix Functions and the McMillan Degree |
|
|
81 | (2) |
|
3.7 Pick Interpolation Revisited |
|
|
83 | (2) |
|
|
85 | (6) |
|
|
91 | (2) |
|
4 Operator Analysis on D2 |
|
|
93 | (1) |
|
4.1 The Space of Hereditary Functions on D2 |
|
|
93 | (2) |
|
4.2 The Hereditary Functional Calculus on D2 |
|
|
95 | (4) |
|
|
99 | (5) |
|
4.4 Models on D2 via the Duality Construction |
|
|
104 | (2) |
|
4.5 The Network Realization Formula for D2 |
|
|
106 | (3) |
|
4.6 Nevanlinna--Pick Interpolation on D2 |
|
|
109 | (3) |
|
4.7 Toeplitz Corona for the Bidisc |
|
|
112 | (1) |
|
4.8 Operator-Valued Functions on D2 |
|
|
113 | (3) |
|
4.9 Models of Operator-Valued Functions on D2 |
|
|
116 | (13) |
|
|
129 | (2) |
|
5 Caratheodory--Julia Theory on the Disc and the Bidisc |
|
|
131 | (1) |
|
5.1 The One-Variable Results |
|
|
131 | (2) |
|
5.2 The Model Approach to Regularity on D: B-points and C-points |
|
|
133 | (4) |
|
5.3 A Proof of the Caratheodory--Julia Theorem on D via Models |
|
|
137 | (4) |
|
5.4 Pick Interpolation on the Boundary |
|
|
141 | (2) |
|
5.5 Regularity, B-points and C-points on the Bidisc |
|
|
143 | (3) |
|
|
146 | (1) |
|
|
147 | (1) |
|
6 Herglotz and Nevanlinna Representations in Several Variables |
|
|
148 | (1) |
|
|
148 | (1) |
|
6.2 The Herglotz Representation on B2 |
|
|
149 | (4) |
|
6.3 Nevanlinna Representations on H via Operator Theory |
|
|
153 | (3) |
|
6.4 The Nevanlinna Representations on Hf2 |
|
|
156 | (4) |
|
6.5 A Classification Scheme for Nevanlinna Representations in Two Variables |
|
|
160 | (5) |
|
6.6 The Type of a Function |
|
|
165 | (3) |
|
|
168 | (1) |
|
7 Model Theory on the Symmetrized Bidisc |
|
|
169 | (1) |
|
7.1 Adding Symmetry to the Fundamental Theorem for D2 |
|
|
170 | (3) |
|
7.2 How to Define Models on the Symmetrized Bidisc |
|
|
173 | (3) |
|
7.3 The Network Realization Formula for G |
|
|
176 | (1) |
|
7.4 The Hereditary Functional Calculus on G |
|
|
177 | (5) |
|
7.5 When Is G a Spectral Domain? |
|
|
182 | (3) |
|
7.6 G Spectral Implies G Complete Spectral |
|
|
185 | (1) |
|
7.7 The Spectral Nevanlinna--Pick Problem |
|
|
185 | (2) |
|
|
187 | (2) |
|
8 Spectral Sets: Three Case Studies |
|
|
189 | (1) |
|
8.1 Von Neumann's Inequality and the Pseudo-Hyperbolic Metric on D |
|
|
189 | (3) |
|
8.2 Spectral Domains and the Caratheodory Metric |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
195 | (8) |
|
8.5 The Caratheodory Distance on G |
|
|
203 | (2) |
|
8.6 Von Neumann's Inequality on Subvarieties of the Bidisc |
|
|
205 | (6) |
|
|
211 | (2) |
|
|
213 | (1) |
|
9.1 The Taylor Spectrum and Functional Calculus |
|
|
213 | (2) |
|
9.2 Calcular Norms and Algebras |
|
|
215 | (8) |
|
9.3 Halmos's Conjecture and Paulsen's Theorem |
|
|
223 | (3) |
|
9.4 The Douglas-Paulsen Norm |
|
|
226 | (7) |
|
9.5 The B. and F. Delyon Norm and Crouzeix's Theorem |
|
|
233 | (2) |
|
9.6 The Badea--Beckermann--Crouzeix Norm |
|
|
235 | (8) |
|
|
243 | (2) |
|
9.8 The Oka Extension Theorem and Calcular Norms |
|
|
245 | (7) |
|
|
252 | (2) |
|
10 Operator Monotone Functions |
|
|
254 | (1) |
|
|
254 | (8) |
|
10.2 An Interlude on Linear Programming |
|
|
262 | (7) |
|
10.3 Locally Matrix Monotone Functions in d Variables |
|
|
269 | (9) |
|
10.4 The Lowner Class in d Variables |
|
|
278 | (1) |
|
10.5 Globally Monotone Rational Functions in Two Variables |
|
|
279 | (3) |
|
|
282 | (1) |
|
PART TWO NON-COMMUTATIVE THEORY |
|
|
283 | (2) |
|
11 Motivation for Non-Commutative Functions |
|
|
285 | (1) |
|
11.1 Non-Commutative Polynomials |
|
|
285 | (2) |
|
|
287 | (1) |
|
|
287 | (1) |
|
11.4 Linear Matrix Inequalities |
|
|
288 | (1) |
|
11.5 The Implicit Function Theorem |
|
|
289 | (1) |
|
11.6 Matrix Monotone Functions |
|
|
289 | (1) |
|
11.7 The Functional Calculus |
|
|
290 | (1) |
|
|
290 | (1) |
|
12 Basic Properties of Non-Commutative Functions |
|
|
291 | (1) |
|
12.1 Definition of an nc-Function |
|
|
291 | (4) |
|
12.2 Locally Bounded nc-Functions Are Holomorphic |
|
|
295 | (3) |
|
|
298 | (2) |
|
|
300 | (2) |
|
|
302 | (1) |
|
|
302 | (1) |
|
13.2 Wandering Isometries |
|
|
303 | (2) |
|
13.3 A Graded Montel Theorem |
|
|
305 | (4) |
|
13.4 An nc Montel Theorem |
|
|
309 | (1) |
|
|
310 | (2) |
|
|
312 | (1) |
|
14 Free Holomorphic Functions |
|
|
313 | (1) |
|
14.1 The Range of a Free, Holomorphic Function |
|
|
313 | (2) |
|
14.2 Nc-Models and Free Realizations |
|
|
315 | (4) |
|
14.3 Free Pick Interpolation |
|
|
319 | (5) |
|
14.4 Free Realizations Redux |
|
|
324 | (2) |
|
14.5 Extending off Varieties |
|
|
326 | (1) |
|
14.6 The nc Oka--Weil Theorem |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
329 | (1) |
|
15 The Implicit Function Theorem |
|
|
330 | (1) |
|
15.1 The Fine Inverse Function Theorem |
|
|
330 | (2) |
|
15.2 The Fat Inverse Function Theorem |
|
|
332 | (5) |
|
15.3 The Implicit Function Theorem |
|
|
337 | (2) |
|
15.4 The Range of an nc-Function |
|
|
339 | (2) |
|
15.5 Applications of the Implicit Function Theorem in Non-Commutative Algebraic Geometry |
|
|
341 | (2) |
|
|
343 | (1) |
|
|
343 | (1) |
|
16 Non-Commutative Functional Calculus |
|
|
344 | (1) |
|
16.1 Nc Operator Functions |
|
|
344 | (5) |
|
16.2 Polynomial Approximation and Power Series |
|
|
349 | (5) |
|
16.3 Extending Free Functions to Operators |
|
|
354 | (2) |
|
16.4 Nc Functional Calculus in Banach Algebras |
|
|
356 | (1) |
|
|
357 | (1) |
Notation |
|
358 | (3) |
Bibliography |
|
361 | (11) |
Index |
|
372 | |