Muutke küpsiste eelistusi

E-raamat: Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light

  • Formaat: 346 pages
  • Ilmumisaeg: 31-Jan-2018
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309467728
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 155,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 346 pages
  • Ilmumisaeg: 31-Jan-2018
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309467728
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The laser has revolutionized many areas of science and society, providing bright and versatile light sources that transform the ways we investigate science and enables trillions of dollars of commerce. Now a second laser revolution is underway with pulsed petawatt-class lasers (1 petawatt: 1 million billion watts) that deliver nearly 100 times the total world's power concentrated into a pulse that lasts less than one-trillionth of a second. Such light sources create unique, extreme laboratory conditions that can accelerate and collide intense beams of elementary particles, drive nuclear reactions, heat matter to conditions found in stars, or even create matter out of the empty vacuum.





These powerful lasers came largely from U.S. engineering, and the science and technology opportunities they enable were discussed in several previous National Academies' reports. Based on these advances, the principal research funding agencies in Europe and Asia began in the last decade to invest heavily in new facilities that will employ these high-intensity lasers for fundamental and applied science. No similar programs exist in the United States. Opportunities in Intense Ultrafast Lasers assesses the opportunities and recommends a path forward for possible U.S. investments in this area of science.

Table of Contents



Front Matter Summary 1 Introduction and Technical Summary 2 Stewardship in High-Intensity Laser Science and Technology 3 Current and Future Intense Source Technology 4 International Landscape 5 Science Motivation 6 Applications 7 Conclusions and Recommendations Appendixes Appendix A: Technical Background Summaries Appendix B: Supplemental Information on the Underlying Laser Technology Appendix C: Supplemental Information on the International Community Appendix D: Medical Applications of Lasers Appendix E: Petawatt-Class Lasers Summary Appendix F: Bibliography of Sources
Summary 1(4)
1 Introduction And Technical Summary 5(15)
1.1 Introduction
5(5)
1.1.1 Target Readers of This Report
6(1)
1.1.2 Historical Background for This Study
7(2)
1.1.3 Extreme Light Infrastructure (ELI)
9(1)
1.2 Status and Stewardship of High-Intensity Science and Associated Technology in the United States
10(1)
1.3 High-Intensity Laser Properties
11(1)
1.4 High-Intensity Laser Technologies
11(4)
1.5 Limits to Scaling to Still Higher Intensity
15(1)
1.6 Science and Technology Community
16(1)
1.7 Science and Applications with High-Intensity Laser Light
16(4)
1.7.1 High-Density Laser-Plasma Interactions
17(1)
1.7.2 Connections to Astrophysics
17(1)
1.7.3 Unique Secondary Sources
17(1)
1.7.4 Particle Acceleration
18(1)
1.7.5 Quantum Vacuum Interactions and Non-perturbative Quantum Electrodynamics
18(1)
1.7.6 Attosecond Science
18(1)
1.7.7 Commercial Applications for High-Intensity Lasers
19(1)
2 Stewardship In High-Intensity Laser Science And Technology 20(29)
2.1 U.S. Leadership in the 20th Century
20(2)
2.1.1 U.S. Dominated High-Intensity Laser Innovation in the 20th Century
20(1)
2.1.2 U.S. Commercial Dominance in the 20th Century
21(1)
2.2 The New Millennium: Transfer of Leadership to Europe
22(4)
2.2.1 Science and Technology Investment in Lasers Declines in the United States as It Builds Overseas
22(1)
2.2.2 Changes in the Relative Level of Investment in Laser Science
22(2)
2.2.3 Transfer of Commercial Leadership to Europe
24(1)
2.2.4 Start-ups and Mergers in Europe
24(2)
2.3 Recent Studies Show a Continuing Need for Laser Technology in the 21st Century
26(3)
2.3.1 Continuing Need for High-Intensity Lasers in the United States
28(1)
2.3.2 Start-ups in the United States
29(1)
2.4 Landscape of Past and Present U.S. Agency Stewardship
29(8)
2.4.1 Historical Trends in Agency Support for High-Intensity Science
29(4)
2.4.2 Department of Energy
33(2)
2.4.3 National Science Foundation
35(1)
2.4.4 Department of Defense
36(1)
2.5 Commercial Investment and Involvement in High-Intensity Laser Component Development at U.S. Laser Laboratories
37(4)
2.5.1 Commercial Availability and Key Components Suppliers
39(2)
2.6 Workforce Development
41(1)
2.7 European Model for Laser Stewardship
41(2)
2.7.1 Operations Model for Petawatt Lasers in Extreme Light Infrastructure
43(1)
2.8 Past U.S. Reports Examining the Prospects of High-Intensity Laser Science
43(6)
2.8.1 Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century
44(1)
2.8.2 Frontiers in High Energy Density Physics: The X-Games of Contemporary Science
44(1)
2.8.3 Science and Applications of Ultrafast Lasers
44(2)
2.8.4 The Interagency Task Force Report on High Energy Density Physics
46(3)
3 Current And Future Intense Source Technology 49(22)
3.1 Current Petawatt-Class Solid-State Lasers and Optical Parametric Chirped-Pulse Amplifiers
50(6)
3.1.1 Glass-based Systems
51(3)
3.1.2 Titanium:Sapphire-based Systems
54(1)
3.1.3 Optical Parametric Chirped-Pulse Amplification-based Systems
55(1)
3.1.4 State of Current Intense Sources
55(1)
3.2 Future Intense Source Technology and Systems
56(6)
3.2.1 Technical Advances
57(1)
3.2.2 Planned Future Sources
58(1)
3.2.3 State of Future Intense Source Technology
59(1)
3.2.4 State of Future Intense Source Systems
60(2)
3.3 Comparison of High-Intensity Source Technologies
62(7)
3.3.1 Nd:glass
64(1)
3.3.2 Ti:sapphire
64(1)
3.3.3 Optical Parametric Chirped-Pulse Amplification
65(1)
3.3.4 Yb-doped Bulk Lasers
66(1)
3.3.5 Yb-doped Fibers
66(1)
3.3.6 Linac-based Sources (Free-Electron Lasers, Beam-Laser Scattering)
66(1)
3.3.7 Intensity Considerations
67(2)
3.4 National Origins of Technology Sources
69(2)
4 International Landscape 71(14)
4.1 Introduction
71(1)
4.2 Global Trends and Distributions
72(7)
4.3 Extreme Light Infrastructure and Europe
79(2)
4.4 Petawatt-Class Laser User Community
81(4)
5 Science Motivation 85(41)
5.1 Introduction to the Intensity Roadmap of Opportunities and Discovery
85(4)
5.2 Ultrafast Spectroscopy and Attosecond Science: The Atomic Unit of Intensity 1-1000 PW/cm2
89(4)
5.2.1 Extreme Nonlinear Optics: Interrogating the Electrons in Matter
89(1)
5.2.2 The Attosecond Time Scale in Atoms and Molecules
90(3)
5.3 High-Intensity Petawatt Laser Studies of High Energy Density Science, Planetary Physics, and Astrophysics
93(10)
5.3.1 Planetary Physics and Astrophysics
95(5)
5.3.2 Isochoric Heating and High Energy Density Plasmas
100(2)
5.3.3 Science That Combines X-ray Free-Electron Lasers, High Energy Electron Accelerators, and Petawatt-Class Lasers
102(1)
5.4 Petawatt Laser-Driven Particle Accelerators
103(6)
5.4.1 Particle Acceleration and Particle Physics
103(3)
5.4.2 Laser-Driven Plasma Wakefield Acceleration
106(3)
5.5 Intense Laser-Driven Particle Sources of Energetic Photons, Neutrons, and Positrons
109(3)
5.5.1 Photon Sources
110(1)
5.5.2 Neutron Sources
111(1)
5.5.3 Positron Sources
112(1)
5.6 High-Intensity, Ultrafast Lasers for Nuclear Physics
112(2)
5.6.1 Introduction
112(1)
5.6.2 High Power Laser Systems for Nuclear Physics
113(1)
5.6.3 gamma-ray Beam Systems for Nuclear Physics
113(1)
5.6.4 Applications Beyond Nuclear Physics
113(1)
5.7 Extreme Intensity: Toward and Beyond the Schwinger Limit of 1014 PW/cm-2
114(12)
5.7.1 Introduction
114(1)
5.7.2 The Schwinger Limit
115(1)
5.7.3 Vacuum Polarization: Matter from Light
116(4)
5.7.4 Nonlinear Thomson and Compton Scattering
120(1)
5.7.5 Radiation Reaction
121(2)
5.7.6 Vacuum Polarization: Elastic Light Scattering
123(1)
5.7.7 Beyond the Standard Model
123(3)
6 Applications 126(22)
6.1 Introduction
126(1)
6.2 Laser Technology Used in Manufacturing
127(5)
6.3 Applications of High Power (petawatt) Lasers to the Stockpile Stewardship Program
132(3)
6.4 Applications of High-Intensity Lasers to Medicine
135(4)
6.4.1 Ultrafast X-ray Radiography in Medicine
135(1)
6.4.2 Electron Beams for Cancer Therapy
136(1)
6.4.3 Ion Beams for Cancer Therapy
137(1)
6.4.4 Laser-Produced Isotopes for Positron Emission Tomography
137(1)
6.4.5 Future Considerations for Medical Applications
138(1)
6.5 High Power Lasers Applications: Fusion Energy
139(2)
6.6 DOD Security Applications
141(1)
6.6.1 Ultrashort Pulse Applications
141(1)
6.6.2 Propagation Applications
142(1)
6.7 Extreme Nonlinear Optics: High-Order Harmonic Generation
142(6)
6.7.1 The Strong-Field Electron Recollision Process and Its Implications
143(1)
6.7.2 High-Order Harmonic Generation as a New Coherent Laser Source at Very Short Wavelengths
144(2)
6.7.3 Technology Needs for Future High-Order Harmonic Generation Research
146(2)
7 Conclusions And Recommendations 148(7)
7.1 Study Conclusions
148(3)
7.2 Recommendations
151(4)
Appendixes
A Technical Background Summaries
155(17)
A1 Technical Terms
155(4)
A2 Brief History of Laser Technology and the Emergence of Petawatt Laser Technologies
159(3)
A3 Technologies Beyond Conventional Chirped-Pulse Amplification
162(2)
A4 Limits to Scaling to Still Higher Peak Powers and Intensities
164(2)
A5 High-Intensity Laser Acronym List
166(6)
B Supplemental Information on the Underlying Laser Technology
172(91)
B1 Basics of Solid-State Lasers
172(24)
B2 Nonlinear Optics and Optical Parametric Chirped-Pulse Amplification Background
196(10)
B3 Enabling Technologies
206(24)
B4 Systems Under Construction or Consideration
230(33)
C Supplemental Information on the International Community
263(4)
C1 User Community Search
263(4)
D Medical Applications of Lasers
267(9)
D1 Imaging with Hard X-rays
267(3)
D2 Laser-Accelerated Hadron Beams for Cancer Therapy
270(5)
D3 Laser-Produced Short-Lived Isotopes for Positron Emission Tomography
275(1)
E Petawatt-Class Lasers Summary
276(27)
E1 Nd:Glass Petawatt-Class Lasers
276(10)
E2 Ti:Sapphire Petawatt-Class Lasers
286(9)
E3 Optical Parametric Chirped-Pulse Amplification Petawatt-Class Lasers
295(5)
E4 Diode-pumped Solid-State Petawatt-Class Lasers
300(3)
F Bibliography of Sources
303