Muutke küpsiste eelistusi

E-raamat: Optical Coding Theory with Prime

(National Chung Hsing University, Taichung, Taiwan), (Hofstra University, Hempstead, New York, USA)
  • Formaat: 384 pages
  • Ilmumisaeg: 03-Sep-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466567818
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 240,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 384 pages
  • Ilmumisaeg: 03-Sep-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466567818
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theoryuntil now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks.

Learn How to Construct and Analyze Optical Codes

The authors use a theorem-proof approach, breaking down theories into digestible form so that readers can understand the main message without searching through tedious proofs. The book begins with the mathematical tools needed to understand and apply optical coding theory, from Galois fields and matrices to Gaussian and combinatorial analytical tools. Using a wealth of examples, the authors show how optical codes are constructed and analyzed, and detail their performance in a variety of applications. The book examines families of 1-D and 2-D asynchronous and synchronous, multilength, and 3-D prime codes, and some non-prime codes.

Get a Working Knowledge of Optical Coding Theory to Help You Design Optical Systems and Networks

Prerequisites include a basic knowledge of linear algebra and coding theory, as well as a foundation in probability and communications theory. This book draws on the authors extensive research to offer an authoritative reference on the emerging field of optical coding theory. In addition, it supplies a working knowledge of the theory and optical codes to help readers in the design of coding-based optical systems and networks.

For more on the technological aspects of optical CDMA, see Optical Code Division Multiple Access: Fundamentals and Applications (CRC Press 2005).

Arvustused

"Written by two renowned world experts, this book is an authoritative, classic reference on the fields of optical coding theory and optical CDMA. The book shows how optical coding theory has evolved as optical coding system and network functionality and capacity expand over the years and [ how the theory has] advanced with hardware technologies. It is a must add-on to the collection of other optical CDMA books in the market." Professor Ivan Glesk, University of Strathclyde, Scotland, UK

"The development of optical CDMA has follows the historical path of wireless CDMA in a way that requires that hardware technologies and coding theory advance in tandem. This book fills a vacuum in the important area of optical coding theory. In addition to covering the construction and analysis of many families of optical codes supported with comprehensive mathematical proofs, several applications extending beyond optical CDMA are also discussed in this book. This book is an authoritative text in the emerging field of optical CDMA, and will serve as an authoritative reference for researchers, engineers, and students in the field of optical CDMA." Paul Prucnal, Princeton University, New Jersey, USA

List of Figures
xi
List of Tables
xix
Preface xxi
About the Authors xxv
Chapter 1 Fundamental Materials and Tools
1(50)
1.1 Galois Fields
1(6)
1.1.1 Primitive Elements
5(2)
1.2 Vector Space
7(4)
1.2.1 Linear Operations in Vector Space over a Field
9(2)
1.3 Matrix Theory
11(7)
1.3.1 Basic Definitions
12(1)
1.3.2 Basic Operations and Properties
13(2)
1.3.3 Determinant
15(1)
1.3.4 Eigenvalues and Eigenvectors
16(2)
1.4 Hamming Distance and Weight
18(1)
1.5 Correlation Functions
19(2)
1.5.1 1-D Auto- and Cross-Correlation Functions
19(1)
1.5.2 2-D Auto- and Cross-Correlation Functions
20(1)
1.6 Cardinality Upper Bound
21(2)
1.7 Markov Chain
23(1)
1.8 Algebraic Tools for Performance Analysis
24(23)
1.8.1 Gaussian Approximation for Unipolar Codes
25(4)
1.8.2 Gaussian Approximation for Bipolar Codes
29(2)
1.8.3 Combinatorial Analysis for Unipolar Codes
31(1)
1.8.4 Hard-Limiting Analysis for Unipolar Codes
32(3)
1.8.5 Soft-Limiting Analysis without Chip Synchronization
35(7)
1.8.6 Hard-Limiting Analysis without Chip Synchronization
42(5)
1.8.7 Spectral Efficiency
47(1)
1.9 Summary
47(4)
Chapter 2 Optical Coding Schemes
51(38)
2.1 1-D Temporal Amplitude Coding
55(5)
2.2 1-D Temporal Phase Coding
60(1)
2.3 1-D Spectral Phase Coding
61(2)
2.4 1-D Spectral Amplitude Coding
63(2)
2.5 2-D Spatial-Temporal Amplitude Coding
65(3)
2.6 2-D Spectral-Temporal Amplitude Coding
68(1)
2.7 Three-Dimensional Coding
69(1)
2.8 Multirate and Multiple-QoS Coding
69(2)
2.9 Multicode Keying and Shifted-Code Keying
71(4)
2.10 Enabling Hardware Technologies
75(6)
2.10.1 Wavelength-Aware Hard-Limiting Detector
75(1)
2.10.2 Fiber Bragg Gratings
76(1)
2.10.3 Arrayed Waveguide Gratings
77(4)
2.11 Potential Applications
81(1)
2.12 Summary
82(7)
Chapter 3 1-D Asynchronous Prime Codes
89(38)
3.1 Original Prime Codes
89(7)
3.1.1 Performance Analysis
92(4)
3.2 Extended Prime Codes
96(4)
3.2.1 Performance Analysis
97(3)
3.3 Generalized Prime Codes
100(6)
3.3.1 Performance Analysis
103(3)
3.4 2n Prime Codes
106(11)
3.4.1 Performance Analysis
116(1)
3.5 Optical Orthogonal Codes
117(7)
3.5.1 Constructions of (N, w, 1, 1) OOC
117(2)
3.5.2 Constructions of (N, w, 1, 2) OOC
119(1)
3.5.3 Constructions of (N, w, 2, 1) OOC
120(2)
3.5.4 Performance Analysis
122(2)
3.6 Summary
124(3)
Chapter 4 1-D Synchronous Prime Codes
127(22)
4.1 Synchronous Prime Codes
128(6)
4.1.1 Performance Analysis
130(4)
4.2 Synchronous Multilevel Prime Codes
134(9)
4.2.1 Performance Analysis
138(5)
4.3 Synchronous Coding Applications
143(3)
4.4 Summary
146(3)
Chapter 5 2-D Asynchronous Prime Codes
149(100)
5.1 Carrier-Hopping Prime Codes
150(6)
5.1.1 Performance Analysis
153(3)
5.2 Multilevel Carrier-Hopping Prime Codes
156(8)
5.2.1 Performance Analysis
160(4)
5.3 Shifted Carrier-Hopping Prime Codes
164(12)
5.3.1 Construction 1: Time Shifts
166(1)
5.3.2 Construction 2: Wavelength Shifts
166(2)
5.3.3 Performance Analysis
168(3)
5.3.4 Spectral Efficiency Study
171(5)
5.4 Extended Carrier-Hopping Prime Codes
176(8)
5.4.1 Performance Analysis
182(2)
5.5 Expanded Carrier-Hopping Prime Codes
184(7)
5.5.1 Performance Analysis
187(4)
5.6 Quadratic-Congruence Carrier-Hopping Prime Codes
191(11)
5.6.1 Performance Analysis
193(2)
5.6.2 Multicode and Shifted-Code Keying
195(5)
5.6.3 Spectral Efficiency Study
200(2)
5.7 Prime-Permuted Codes with Unipolar Codes
202(16)
5.7.1 Performance Analysis
209(9)
5.8 Prime-Permuted Codes with Bipolar Codes
218(16)
5.8.1 Performance Analysis
226(8)
5.9 Quadratic-Congruence-Permuted Codes
234(5)
5.9.1 Performance Analysis
237(2)
5.10 2-D Optical Orthogonal Codes
239(5)
5.10.1 Construction 1: From 1-D (N, w, 1, 1) OOC
240(2)
5.10.2 Construction 2: From Reed-Solomon Code
242(2)
5.10.3 Performance Analysis
244(1)
5.11 Summary
244(5)
Chapter 6 2-D Synchronous Prime Codes
249(24)
6.1 Synchronous Original, Expanded, and Quadratic-Congruence Carrier-Hopping Prime Codes
249(7)
6.1.1 Performance Analysis
253(3)
6.2 Synchronous Multilevel Carrier-Hopping Prime Codes
256(8)
6.2.1 Performance Analysis
259(5)
6.3 Synchronous Prime-Permuted Codes
264(6)
6.3.1 Performance Analysis
267(3)
6.4 Summary
270(3)
Chapter 7 Multilength Prime Codes
273(60)
7.1 Multilength Carrier-Hopping Prime Codes
274(11)
7.1.1 Performance Analysis
280(5)
7.2 Multilength Expanded Carrier-Hopping Prime Codes
285(6)
7.2.1 Performance Analysis
288(3)
7.3 Multilength Quadratic-Congruence Carrier-Hopping Prime Codes
291(12)
7.3.1 Performance Analysis
294(3)
7.3.2 Multicode Keying
297(4)
7.3.3 Spectral Efficiency Study
301(2)
7.4 2-D Multilength Prime-Permuted Codes
303(6)
7.4.1 Performance Analysis
306(3)
7.5 Variable-Weight Coding with Same Bit Power
309(10)
7.6 Multilength 1-D Optical Orthogonal Codes
319(9)
7.6.1 Construction 1: Cross-Correlation of One
319(2)
7.6.2 Construction 2: Cross-Correlation of Two
321(3)
7.6.3 Performance Analysis
324(4)
7.7 Summary
328(5)
Chapter 8 3-D Prime Codes
333(12)
8.1 Concatenated Prime Codes
333(5)
8.1.1 Performance Analysis
336(2)
8.2 Multicarrier Prime Codes
338(6)
8.2.1 Performance Analysis
341(3)
8.3 Summary
344(1)
Index 345
Wing C. Kwong is currently a professor in the Department of Engineering at Hofstra University, New York. He has published numerous professional articles, chaired technical sessions and served technical program committees in international conferences, and has given seminars and tutorials around the world. His research interests include optical and wireless communication systems and multiple-access networks, optical interconnection networks, and ultrafast all-optical signal processing techniques. Dr. Kwong is a senior member of the IEEE and is currently an associate editor of the IEEE Transactions on Communications. He received a NEC Graduate Fellowship awarded by the NEC Research Institute, Princeton, New Jersey, in 1991, and the Young Engineer Award from the IEEE (Long Island chapter) in 1998.

Guu-Chang Yang is currently a professor in the Department of Electrical Engineering and the Graduate Institute of Communication Engineering at National Chung Hsing University, Taiwan. His research interests include wireless and optical communication systems, modulation and signal processing techniques, and applications of CDMA. Dr. Yang is the area coordinator of the National Science Councils Telecommunications Program (2012-2014), co-coordinator of the National Science Councils National Networked Communication Program (2010-2013), and chairman of the IEEE Communications Society Taipei Chapter (2013-2014). He became an IEEE Fellow in 2012 for contributions to optical CDMA. He has received several awards, including the Distinguished Research Award from the National Science Council in 2004, and the Outstanding Young Electrical Engineer Award in 2003 and the Distinguished Electrical Engineering Professor Award in 2012, both from the Chinese Institute of Electrical Engineering.