Muutke küpsiste eelistusi

E-raamat: Optical Electronics: Self-Organized Integration and Applications

(Tokyo University of Technology, Japan)
  • Formaat: 300 pages
  • Ilmumisaeg: 06-Jun-2012
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9789814364089
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 143,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 300 pages
  • Ilmumisaeg: 06-Jun-2012
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9789814364089
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book proposes and reviews comprehensive strategies based on optical electronics for constructing optoelectronic systems with minimized optics excess. It describes the core technologies such as self-organized optical waveguides based on self-organized lightwave network (SOLNET), three-dimensional optical circuits, material-saving heterogeneous thin-film device integration process (PL-Pack with SORT), and high-speed/small-size light modulators and optical switches. The book also presents applications of optical electronics, including integrated optical interconnects within computers and massive optical switching systems utilizing three-dimensional self-organized optical circuits, solar energy conversion systems, and bio/medical photonics such as cancer therapy.

Arvustused

"I recommend this book as a unique and excellent reference for researchers aiming at next-generation optical interconnections and all interested in future super-performance integrated electronics systems." Prof. Osamu Wada - Kobe University, Japan

"The book gives excellent details on theoretical fundamentals, circuit analysis, and experimental demonstrations. The self-organized integration approach is feasible and innovative for cost reduction and space saving, both of which are vital for new technology implementations." Dr. Michael G. Lee - Fujitsu Laboratories of America, USA

"Toward the industrialization of optical interconnects, we have to think about how we can reduce cost and size. In this book, Prof. Yoshimura gives us an excellent approach to solving the problem: developing the self-organized integration of optoelectronic devices. His broad vision based on his extensive experience will be highly useful to young scientists." Dr. Tetsuo Sato - Nissan Chemical Industries, LTD., Japan

This remarkable book introduces and describes the concept of self-organized integration of optoelectronics that makes assembly and packaging of high-speed optoelectronic systems suitable for a volume production environment. A recommended read for anyone interested in high-speed optoelectronics and interconnects. Dr. Alexei Glebov - OptiGrate Corp., USA

Preface xv
1 Introduction
1(4)
2 From Electronics to Optical Electronics
5(20)
2.1 Merits of Optics Implementation Into Electronics
5(4)
2.2 Optical Electronics
9(9)
2.2.1 Optics Implementation Methods
10(3)
2.2.2 Three-Dimensional Optoelectronic Platforms Based on Scalable Film Optical Link Module (S-FOLM)
13(4)
2.2.3 Self-Organized 3-D Integrated Optical Circuits
17(1)
2.3 Core Technologies in Optical Electronics
18(7)
3 Analysis Tools for Optical Circuits
25(10)
3.1 Beam Propagation Method (BPM)
27(4)
3.2 Finite Difference Time Domain (FDTD) Method
31(4)
4 Self-Organized Optical Waveguides: Theoretical Analysis
35(46)
4.1 Concept of Self-Organized Lightwave Network
35(2)
4.2 Photo-Induced Refractive Index Increase (PRI) Materials
37(2)
4.3 Simulation of SOLNET by BPM
39(15)
4.3.1 One-Beam-Writing SOLNET
39(1)
4.3.1.1 Procedure
39(2)
4.3.1.2 Results
41(3)
4.3.2 Two-Beam-Writing SOLNET
44(1)
4.3.2.1 Procedure
44(1)
4.3.2.2 Results
45(2)
4.3.3 Reflective SOLNET (R-SOLNET)
47(1)
4.3.3.1 Procedure
47(3)
4.3.3.2 Results
50(4)
4.4 Simulation of SOLNET by FDTD Method
54(22)
4.4.1 SOLNET Simulator
54(1)
4.4.2 L-Shaped One-Beam-Writing SOLNET
55(2)
4.4.3 R-SOLNET Between a Micro-Scale Waveguide and a Nano-Scale Waveguide
57(5)
4.4.4 R-SOLNET for Y-Branching Self-Aligned Waveguides
62(1)
4.4.5 R-SOLNET for Optical Z-Connections with Vertical Waveguides
62(8)
4.4.6 R-SOLNET with Luminescent Materials
70(6)
4.5 SOLNET Using Two-Wavelength Write Beams
76(5)
5 Self-Organized Optical Waveguides: Experimental Demonstrations
81(32)
5.1 One-Beam-Writing SOLNET
81(5)
5.1.1 In Monomer/Binder-Type Photo-Polymers
81(2)
5.1.2 In Monomer/Monomer-Type Photo-Polymers
83(1)
5.1.3 Direct Growth from LD
84(2)
5.2 Two-Beam-Writing SOLNET
86(5)
5.2.1 In Monomer/Binder-Type Photo-Polymers
86(2)
5.2.2 In Monomer/Monomer-Type Photo-Polymers
88(3)
5.3 R-SOLNET
91(8)
5.3.1 Between a Window and a Mirror
91(2)
5.3.2 Between an Optical Fiber and a Mirror with Angular Misalignment
93(2)
5.3.3 Between an Optical Fiber and a Mirror with Lateral Misalignment
95(2)
5.3.4 Between an Optical Fiber and a Luminescent Target of Phosphor
97(2)
5.4 High-Index-Contrast SOLNET
99(10)
5.4.1 SOLNET in PRI Sol-Gel Materials
100(3)
5.4.2 Light Beam Confinement and Coupling Efficiency
103(5)
5.4.3 R-SOLNET
108(1)
5.5 Influence of Write Beam Absorption in PRI Materials on SOLNET Growth Dynamics
109(1)
5.6 Emissive SOLNET
110(3)
6 Optical Waveguide Films with Vertical Mirrors
113(36)
6.1 Duplication Process of Optical Waveguide Films of Photo-Definable Materials
113(2)
6.2 Polymer Optical Waveguide Films Fabricated by the Built-In Mask Method
115(7)
6.2.1 Waveguide Core Fabrication
115(4)
6.2.2 Vertical Mirror Fabrication
119(3)
6.3 Three-Layer Skirt-Type Core Structures
122(10)
6.3.1 Observation of Leakage and Scattering at Vertical Mirrors by SOLNET
122(2)
6.3.2 Three-Layer Skirt-Type Core Structures
124(1)
6.3.3 Simulation by BPM and FDTD Method
125(1)
6.3.4 Fabrication by the Built-In Mask method
125(7)
6.4 Nano-Scale Waveguides of PRI Sol-Gel Materials
132(17)
6.4.1 Linear, Bending, and Branching Waveguides
133(1)
6.4.1.1 Fabrication process
133(1)
6.4.1.2 Linear waveguide
134(6)
6.4.1.3 Bending and branching waveguides
140(4)
6.4.2 Vertical Mirrors
144(1)
6.4.3 Fine 3-D Structures for All-Air-Clad Waveguides
144(5)
7 3-D Optical Circuits with Stacked Waveguide Films
149(12)
7.1 Structures of 3-D Optical Circuits
149(1)
7.2 Type 1: Stacked Waveguide Films with Vertical Mirrors
150(7)
7.2.1 Demonstration of 3-D Optical Wiring
150(3)
7.2.2 Loss Measurements at Optical Z-Connections
153(1)
7.2.2.1 Problems in measurements
153(3)
7.2.2.2 Loss at optical Z-Connections
156(1)
7.3 Type 2: Optical Waveguide Films with Vertical Waveguides of SOLNET
157(4)
8 Heterogeneous Thin-Film Device Integration
161(32)
8.1 PL-Pack with SORT versus Flip-Chip-Bonding-Based Packaging
162(1)
8.2 PL-Pack with SORT
163(6)
8.2.1 Process Flow of PL-Pack
163(1)
8.2.2 Process Flow of SORT
164(5)
8.3 Impact of PL-Pack with SORT
169(9)
8.3.1 Resource Consumption and Cost
170(2)
8.3.2 Mechanical Properties
172(2)
8.3.3 Step Count
174(2)
8.3.4 Device Flake Placement Density
176(2)
8.4 SORT of Polymer Waveguide Lenses
178(3)
8.5 SORT of Waveguide Cores
181(4)
8.5.1 Material-Saving Process for Waveguide Fabrication
181(1)
8.5.2 All-Air-Clad Waveguides
182(3)
8.6 Transfers of Two Kinds of Model Devices
185(3)
8.6.1 Light-Assisted SORT (LA-SORT)
185(1)
8.6.2 Experimental Demonstration of LA-SORT for Two Kinds of Devices
186(2)
8.7 Concept of SORT for Nano-Scale Heterogeneous Integration
188(5)
9 Optical Switches
193(34)
9.1 Variable Well Optical ICs (VWOICs) and Waveguide Prism Deflectors (WPDs)
196(20)
9.1.1 Design of VWOIC
198(1)
9.1.2 Design of WPD Optical Switch Utilizing the Pockels Effect
199(1)
9.1.2.1 Simulation procedure
199(2)
9.1.2.2 Preliminary settings of the general structural model
201(1)
9.1.2.3 Performance evaluation by simulation
202(3)
9.1.3 Design of WPD Optical Switch Utilizing the Kerr Effect
205(1)
9.1.3.1 Simulation procedure
206(1)
9.1.3.2 Preliminary settings of the general structural model
206(4)
9.1.3.3 Performance evaluation by simulation
210(1)
9.1.4 WPD Optical Switch with ADD Function
211(3)
9.1.5 Impact of Polymer Multiple Quantum Dots (MQDs) on Optical Switches
214(1)
9.1.6 Future Integration Issues
215(1)
9.1.7 Experimental Demonstration of WPD utilizing PLZT
215(1)
9.2 Ring Resonator Optical Switches
216(3)
9.3 Band Width Limit in Photonic Crystal Waveguides
219(8)
10 OE Hardware Built by Optical Electronics
227(70)
10.1 Optical Solder
227(4)
10.1.1 One-Beam-Writing SOLNET
227(2)
10.1.2 Two-Beam-Writing SOLNET
229(1)
10.1.3 R-SOLNET
230(1)
10.2 Optical Wiring in Free Spaces
231(4)
10.2.1 Free-Space Optical Interconnects
231(1)
10.2.2 Optical Z-Connections in 3-D Optical Circuits
232(3)
10.3 Integrated Optical Interconnects within Boxes
235(26)
10.3.1 Optical Interconnects Based on "Film/Z-Connection" Technology
235(1)
10.3.1.1 Future image of "within boxes"
235(1)
10.3.1.2 Concept of optical interconnects based on "Film/Z-connection" technology
236(2)
10.3.2 OE Substrates of S-FOLM using "Film/Z-Connection"
238(6)
10.3.3 Three-Dimensional OE Platforms of S-FOLM using "Film/Z-Connection"
244(5)
10.3.4 Fabrication of Optical Waveguide Film/PCB Stacks
249(7)
10.3.5 Optoelectronic Amplifier/Driver-Less Substrate (OE-ADLES)
256(1)
10.3.5.1 Concept of OE-ADLES
256(2)
10.3.5.2 Estimation of power dissipation and delay in OE-ADLES
258(3)
10.4 Optical Switching Systems
261(36)
10.4.1 Optical Switching Systems with 3-D Architecture
262(1)
10.4.2 Concept of the 3-D Micro Optical Switching System (3D-MOSS)
263(1)
10.4.2.1 Structures
264(5)
10.4.2.2 Performance
269(2)
10.4.2.3 Material/cost saving heterogeneous integration
271(1)
10.4.2.4 Implementation of self-organized 3-D optical circuits
272(3)
10.4.2.5 Impact of HIC waveguide implementation into 3D-MOSS
275(1)
10.4.3 3D-MOSS for 1024 × 1024 Banyan Network
275(1)
10.4.3.1 Structural model
276(5)
10.4.3.2 Simulated performance
281(1)
10.4.3.3 Size and insertion loss
282(8)
10.4.3.4 Impact of HIC waveguide implementation into 3D-MOSS
290(7)
11 Integrated Solar Energy Conversion Systems
297(36)
11.1 Concept
297(5)
11.2 Light Beam Collecting Films
302(23)
11.2.1 Structures
302(4)
11.2.2 Design
306(1)
11.2.2.1 Simulation procedure
306(1)
11.2.2.2 Tapered vertical/horizontal waveguide-type light beam collecting films
307(2)
11.2.2.3 Multi-layer waveguide-type light beam collecting films
309(9)
11.2.2.4 Overall consideration
318(4)
11.2.3 Possible Fabrication Process
322(3)
11.3 Novel Structures of Photo-Voltaic and Photo-Synthesis Devices
325(3)
11.4 Waveguide-Type Photo-Voltaic and Photo-Synthesis Devices
328(5)
12 Future Challenges
333(32)
12.1 Molecular Layer Deposition
335(8)
12.1.1 Concept
335(2)
12.1.2 Experimental Demonstrations
337(1)
12.1.3 Location/Orientation-Controlled MLD
338(4)
12.1.4 Molecular Nano Duplication (MND)
342(1)
12.2 Polymer MQDs for EO Materials
343(12)
12.2.1 Enhancement of the Pockels Effect by Controlling Wavefunction Shapes
344(5)
12.2.2 Fabrication of Polymer MQDs
349(6)
12.3 Molecular Circuits
355(3)
12.4 Thin-Film Bio/Medical Photonics
358(7)
12.4.1 Integrated Photoluminescence Analysis Chips
358(1)
12.4.2 Indicator for Reflective or Luminescent Materials using R-SOLNET
359(2)
12.4.3 Molecular Recognition Chip
361(4)
Epilogue 365(2)
Index 367
Tetsuzo Yoshimura received his B.Sc. degree in physics from Tohoku University, Sendai, Japan, in 1974, and M.Sc. and Ph.D. degrees in physics from Kyoto University, Kyoto, Japan, in 1976 and 1985, respectively. In 1976, he joined Fujitsu Laboratories Ltd. and was engaged in research on optoelectronic devices. From 1997 to 2000, he was with Fujitsu Computer Packaging Technologies, Inc., San Jose, CA, in charge of research on board/chip-level optical wiring. He is currently a professor at Tokyo University of Technology. He studies self-organized and three-dimensional optical circuits, resource-saving heterogeneous integration, and organic tailored materials grown by MLD, and also their applications to optical interconnects within computers, massive optical switching systems, solar energy conversion systems, and bio/medical photonics.