Muutke küpsiste eelistusi

E-raamat: Optical Fiber Communication Systems with MATLAB and Simulink Models

(Huawei Technologies Co., Ltd., European Research Center, Munich, Germany)
  • Formaat: 899 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 01-Dec-2014
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040073469
  • Formaat - EPUB+DRM
  • Hind: 175,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 899 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 01-Dec-2014
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040073469

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook is for an upper-level undergraduate course on fiber optic communication for students of science and engineering who have completed courses in electromagnetic theory, signal processing, and digital communication. The topics include geometrical and guiding properties of optical fibers, advanced modulation format optical transmitters, direct detection optical receivers, the MATLAB Simulink modeling of Raman amplification and integration in fiber transmission systems, and techniques and Simulink models for self-coherent optically amplified digital transmission systems. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com) Carefully structured to instill practical knowledge of fundamental issues, Optical Fiber Communication Systems with MATLAB® and Simulink® Modelsdescribes the modeling of optically amplified fiber communications systems using MATLAB® and Simulink®. This lecture-based book focuses on concepts and interpretation, mathematical procedures, and engineering applications, shedding light on device behavior and dynamics through computer modeling.Supplying a deeper understanding of the current and future state of optical systems and networks, thisSecond Edition:Reflects the latest developments in optical fiber communications technologyIncludes new and updated case studies, examples, end-of-chapter problems, and MATLAB® and Simulink® modelsEmphasizes DSP-based coherent reception techniques essential to advancement in short- and long-term optical transmission networksOptical Fiber Communication Systems with MATLAB® and Simulink® Models, Second Editionis intended for use in university and professional training courses in the specialized field of optical communications. This text should also appeal to students of engineering and science who have already taken courses in electromagnetic theory, signal processing, and digital communications, as well as to optical engineers, designers, and practitioners in industry.

Arvustused

"This book describes the principles, practices and modeling of optically amplified fiber communications systems using MATLAB® and Simulink® platforms. This lecture-based book is pleasant and contains careful discussions of a large number of topics dealing with the multifaceted aspects of light-wave optical-fiber communications engineering. Binh does an excellent job of focusing on practical applications and fundamental issues. What sets the book apart from other optical fiber texts is the authors framing in terms of MATLAB Simulink models. The target audience for Binhs book includes undergraduate engineering and science students, as well as optical engineers and designers." Book Review by Professor Christian Brosseau, Université de Bretagne Occidentale, Brest, France, writing in Optics & Photonics News

"This book adds an aspect of programming and simulation not so well developed in other books. It is complete in this sense and enables directly linking the physics of optical components and systems to realistic results." Martin Rochette, Associate Professor, McGill University, Quebec, Canada

"this will be an excellent textbook since it has all new development and information on optical communication systemsI think this book can easily replace many other textbooks in this field." Massoud Moussavi, California State Polytechnic University-Pomona

"The book is well written. It describes the fundamentals of fiber optic systems and presents the exact model texts and mathematical formulas which can be used to create practical computing models." Associate professor, Dr. Paulius Tervydis, Kaunas University of Technology, Lithuania "This book describes the principles, practices and modeling of optically amplified fiber communications systems using MATLAB® and Simulink® platforms. This lecture-based book is pleasant and contains careful discussions of a large number of topics dealing with the multifaceted aspects of light-wave optical-fiber communications engineering. Binh does an excellent job of focusing on practical applications and fundamental issues. What sets the book apart from other optical fiber texts is the authors framing in terms of MATLAB Simulink models. The target audience for Binhs book includes undergraduate engineering and science students, as well as optical engineers and designers." Book Review by Professor Christian Brosseau, Université de Bretagne Occidentale, Brest, France, writing in Optics & Photonics News

"This book adds an aspect of programming and simulation not so well developed in other books. It is complete in this sense and enables directly linking the physics of optical components and systems to realistic results." Martin Rochette, Associate Professor, McGill University, Quebec, Canada

"this will be an excellent textbook since it has all new development and information on optical communication systemsI think this book can easily replace many other textbooks in this field." Massoud Moussavi, California State Polytechnic University-Pomona

"The book is well written. It describes the fundamentals of fiber optic systems and presents the exact model texts and mathematical formulas which can be used to create practical computing models." Associate professor, Dr. Paulius Tervydis, Kaunas University of Technology, Lithuania

Preface xxi
List of Abbreviations xxv
1 Introduction 1(12)
1.1 Historical Perspectives
2(3)
1.2 Digital Modulation for Advanced Optical Transmission Systems
5(3)
1.3 Demodulation Techniques
8(1)
1.4 MATLAB® Simulink® Platform
9(1)
1.5 Organization of the Book
Chapters
10(3)
2 Optical Fibers: Geometrical and Guiding Properties 13(42)
2.1 Motivations and Some Historical Background
13(2)
2.2 Dielectric Slab Optical Waveguides
15(8)
2.2.1 Structure
16(1)
2.2.2 Numerical Aperture
17(1)
2.2.3 Modes of Symmetric Dielectric Slab Waveguides
17(2)
2.2.3.1 The Wave Equations
18(1)
2.2.4 Optical-Guided Modes
19(3)
2.2.4.1 Even TE Modes
20(1)
2.2.4.2 Odd TE Modes
20(1)
2.2.4.3 Graphical Solutions for Guided TE Modes (Even and Odd)
21(1)
2.2.5 Cutoff Properties
22(1)
2.3 Optical Fiber: General Properties
23(12)
2.3.1 Geometrical Structures and Index Profile
23(2)
2.3.1.1 Step-Index Profile
24(1)
2.3.1.2 Graded-Index Profile
24(1)
2.3.1.3 Power-Law-Index Profile
24(1)
2.3.1.4 Gaussian-Index Profile
25(1)
2.3.2 The Fundamental Mode of Weakly Guiding Fibers
25(6)
2.3.2.1 Solutions of the Wave Equation for Step-Index Fiber
26(5)
2.3.3 Cutoff Properties
31(1)
2.3.4 Single and Few Mode Conditions
32(3)
2.4 Power Distribution and Approximation of Spot Size
35(2)
2.4.1 Power Distribution
35(1)
2.4.2 Approximation of Spot Size r0 of a Step-Index Fiber
36(1)
2.5 Equivalent Step-Index (ESI) Description
37(4)
2.5.1 Definitions of ESI Parameters
38(1)
2.5.2 Accuracy and Limits
39(1)
2.5.3 Examples on ESI Techniques
39(1)
2.5.3.1 Graded-Index Fibers
39(1)
2.5.3.2 Graded-Index Fiber with a Central Dip
39(1)
2.5.4 General Method
40(1)
2.6 Nonlinear Optical Effects
41(6)
2.6.1 Nonlinear Phase Modulation Effects
41(15)
2.6.1.1 SPM: Self-Phase Modulation
41(1)
2.6.1.2 XPM: Cross-Phase Modulation
42(1)
2.6.1.3 Stimulated Scattering Effects
43(1)
2.6.1.4 Stimulated Brillouin Scattering (SBS)
44(1)
2.6.1.5 Stimulated Raman Scattering (SRS)
45(1)
2.6.1.6 Four-Wave Mixing
45(2)
2.7 Optical Fiber Manufacturing and Cabling
47(2)
2.8 Concluding Remarks
49(1)
Problems
50(2)
References
52(3)
3 Optical Fibers: Signal Attenuation and Dispersion 55(48)
3.1 Introduction
55(1)
3.2 Signal Attenuation in Optical Fibers
56(4)
3.2.1 Intrinsic or Material Attenuation
56(1)
3.2.2 Absorption
56(1)
3.2.3 Rayleigh Scattering
57(1)
3.2.4 Waveguide Loss
57(1)
3.2.5 Bending Loss
57(1)
3.2.6 Microbending Loss
58(1)
3.2.7 Joint or Splice Loss
58(1)
3.2.8 Attenuation Coefficient
59(1)
3.3 Signal Distortion in Optical Fibers
60(8)
3.3.1 Basics on Group Velocity
60(1)
3.3.2 Group Velocity Dispersion (GVD)
61(7)
3.3.2.1 Material Dispersion
61(4)
3.3.2.2 Waveguide Dispersion
65(3)
3.4 Transfer Function of Single-Mode Fibers
68(9)
3.4.1 Higher-Order Dispersion
68(1)
3.4.2 Transmission Bit-Rate and the Dispersion Factor
68(3)
3.4.3 Polarization Mode Dispersion
71(3)
3.4.4 Fiber Nonlinearity
74(3)
3.5 Advanced Optical Fibers: Dispersion-Shifted, -Flattened, and -Compensated Optical Fibers
77(1)
3.6 Effects of Mode Hopping
77(1)
3.7 Numerical Solution: Split-Step Fourier Method
78(7)
3.7.1 Symmetrical Split-Step Fourier Method (SSFM)
78(1)
3.7.2 MATLAB® Program and MATLAB® Simulink® Models of the SSFM
79(4)
3.7.2.1 MATLAB® Program
79(4)
3.7.2.2 MATLAB® Simulink® Model
83(1)
3.7.3 Modeling of Polarization Mode Dispersion (PMD)
83(1)
3.7.4 Optimization of Symmetrical SSFM
84(21)
3.7.4.1 Optimization of Computational Time
84(1)
3.7.4.2 Mitigation of Windowing Effect and Waveform Discontinuity
84(1)
3.8 Concluding Remarks
85(1)
3.A Appendix
85(12)
Problems
97(4)
References
101(2)
4 Overview of Modeling Techniques for Optical Transmission Systems Using MATLAB® Simulink® 103(46)
4.1 Overview
103(2)
4.2 Optical Transmitter
105(4)
4.2.1 Background of External Optical Modulators
106(1)
4.2.2 Optical Phase Modulator
106(1)
4.2.3 Optical Intensity Modulator
107(2)
4.2.3.1 Single-Drive MZIM
108(1)
4.2.3.2 Dual-Drive MZIM
109(1)
4.3 Impairments of Optical Fiber
109(7)
4.3.1 Chromatic Dispersion (CD)
109(1)
4.3.2 Chromatic Dispersion as a Total of Material Dispersion and Waveguide Dispersion
110(3)
4.3.3 Dispersion Length
113(1)
4.3.4 Polarization Mode Dispersion (PMD)
113(2)
4.3.5 Fiber Nonlinearity
115(1)
4.4 Modeling of Fiber Propagation
116(4)
4.4.1 Symmetrical SSFM
116(2)
4.4.2 Modeling of PMD
118(1)
4.4.3 Optimization of Symmetrical SSFM
118(2)
4.4.3.1 Optimization of Computational Time
118(1)
4.4.3.2 Mitigation of Windowing Effect and Waveform Discontinuity
119(1)
4.5 Optical Amplifiers
120(1)
4.5.1 Optical and Electrical Filters
120(1)
4.6 Optical Receiver
121(1)
4.7 Performance Evaluation
122(11)
4.7.1 Optical Signal-to-Noise Ratio (OSNR)
124(1)
4.7.2 OSNR Penalty
124(1)
4.7.3 Eye Opening (E0)
124(1)
4.7.4 Conventional Evaluation Methods
125(2)
4.7.4.1 Monte Carlo Method
125(1)
4.7.4.2 Single Gaussian Statistical Method
126(1)
4.7.5 Novel Statistical Methods
127(6)
4.7.5.1 Multivariate Gaussian Distributions (MGD) Method
127(2)
4.7.5.2 Generalized Pareto Distribution (GPD) Method
129(4)
4.8 MATLAB® Simulink® Modeling Platform
133(5)
4.8.1 General Model
133(3)
4.8.2 Initialization File
136(2)
4.9 OCSS®: A MATLAB® Simulation Platform
138(6)
4.9.1 Overview
138(2)
4.9.2 System Design Using Software Simulation
140(1)
4.9.3 Optical Communication Systems Simulator: OCSS® Simulation Platform
140(1)
4.9.4 Transmitter Module
141(1)
4.9.5 Optical Fiber Module
142(1)
4.9.6 Receiver Module
142(1)
4.9.7 System Simulation
143(1)
4.9.8 Equalized Optical Communications Systems
143(1)
4.9.9 Soliton Optical Communications Systems
143(1)
4.9.10 Remarks
144(1)
4.10 Concluding Remarks
144(1)
References
145(4)
5 Optical Direct and External Modulation 149(72)
5.1 Introduction
149(1)
5.2 Direct Modulation
150(34)
5.2.1 Introductory Remarks
150(1)
5.2.2 Physics of Semiconductor Lasers
151(13)
5.2.2.1 The Semiconductor p—n Junction for Lasing Light Waves
152(1)
5.2.2.2 Optical Gain Spectrum
153(1)
5.2.2.3 Types of Semiconductor Lasers
153(1)
5.2.2.4 Fabry—Perot (FP) Heterojunction Semiconductor Laser
154(1)
5.2.2.5 Distributed-Feedback (DFB) Semiconductor Laser
155(1)
5.2.2.6 Constricted-Mesa Semiconductor Laser
155(1)
5.2.2.7 Special Semiconductor Laser Source
156(1)
5.2.2.8 Single-Mode Optical Laser Rate Equations
157(2)
5.2.2.9 Dynamic Response of Laser Source
159(1)
5.2.2.10 Frequency Chirp
160(1)
5.2.2.11 Laser Noises
161(3)
5.2.3 Modeling and Development of Optical Transmitter
164(6)
5.2.3.1 Line Coding
164(3)
5.2.3.2 Runge—Kutta Algorithm
167(2)
5.2.3.3 Optical Source Modeling
169(1)
5.2.4 Conditions for the Laser Rate Equations
170(9)
5.2.4.1 Switch On State
172(1)
5.2.4.2 Continuous State
173(1)
5.2.4.3 The Effect of Rate Equation Parameters on the Laser Response
174(1)
5.2.4.4 The Effect of Laser Rise Time Constant
174(1)
5.2.4.5 Effects of the Confinement Factor (Γ)
174(1)
5.2.4.6 Effects of the Linewidth Enhancement Factor (α)
175(2)
5.2.4.7 Effects of Differential Quantum Efficiency (η)
177(1)
5.2.4.8 Effects of the Photon Lifetime (τp)
177(1)
5.2.4.9 Effects due to the Carrier Lifetime (τn)
178(1)
5.2.4.10 Effects due to the Gain Compression Factor (epsilon)
179(1)
5.2.5 Power Output and Eye-Diagram Analysis
179(5)
5.2.5.1 Eye-Diagram Analysis
180(1)
5.2.5.2 Recent Research and Development in Optical Laser Source
181(2)
5.2.5.3 Simulation Software
183(1)
5.2.5.4 Hardware
183(1)
5.3 Introduction to Optical External Modulation
184(14)
5.3.1 Phase Modulators
184(2)
5.3.2 Intensity Modulators
186(1)
5.3.3 Phasor Representation and Transfer Characteristics
186(2)
5.3.4 Bias Control
188(1)
5.3.5 Chirp-Free Optical Modulators
188(3)
5.3.6 Structures of Photonic Modulators
191(1)
5.3.7 Typical Operational Parameters
191(1)
5.3.8 Electro-Absorption Modulators
191(3)
5.3.9 Silicon-Based Optical Modulators
194(2)
5.3.10 MATLAB® Simulink® Models of External Optical Modulators
196(29)
5.3.10.1 Phase Modulation Model and Intensity Modulation
196(2)
5.3.10.2 DWDM Optical Multiplexers and Modulators
198(1)
5.4 Remarks
198(2)
5.A Appendices
200(18)
References
218(3)
6 Advanced Modulation Format Optical Transmitters 221(50)
6.1 Introduction
221(1)
6.2 Digital Modulation Formats
222(3)
6.3 ASK Modulation Formats and Pulse Shaping
225(5)
6.3.1 Return-to-Zero Optical Pulses
225(1)
6.3.2 Phasor Representation of CSRZ Pulses
226(2)
6.3.3 Phasor Representation of RZ33 Pulses
228(2)
6.4 Differential Phase Shift Keying
230(2)
6.4.1 Background
230(1)
6.4.2 Optical DPSK Transmitter
231(1)
6.5 Generation of Modulation Formats
232(12)
6.5.1 Amplitude—Modulation ASK—NRZ and ASK—RZ
233(2)
6.5.1.1 Amplitude—Modulation Carrier-Suppressed RZ (CSRZ) Formats
235(1)
6.5.2 Discrete Phase—Modulation NRZ Formats
235(9)
6.5.2.1 Differential Phase-Shift Keying (DPSK)
235(1)
6.5.2.2 Differential Quadrature Phase-Shift Keying (DQPSK)
236(1)
6.5.2.3 NRZ—DPSK
236(1)
6.5.2.4 RZ—DPSK
237(1)
6.5.2.5 Generation of M-Ary Amplitude Differential Phase-Shift Keying (M-Ary ADPSK) Using One MZIM
237(2)
6.5.2.6 Continuous Phase—Modulation PM—NRZ Formats
239(1)
6.5.2.7 Linear and Nonlinear MSK
240(3)
6.5.2.8 MSK as Offset Differential Quadrature Phase—Shift Keying (ODQPSK)
243(1)
6.6 Photonic MSK Transmitter Using Two Cascaded Electro-Optic Phase Modulators
244(13)
6.6.1 Optical MSK Transmitter Using Mach—Zehnder Intensity Modulators: I—Q Approach
245(2)
6.6.2 Single Sideband (SSB) Optical Modulators
247(2)
6.6.3 Optical RZ—MSK
249(1)
6.6.4 Multi-Carrier Multiplexing (MCM) Optical Modulators
249(3)
6.6.5 Spectra of Modulation Formats
252(5)
6.7 Generation of QAM Signals
257(4)
6.7.1 Generation
257(3)
6.7.2 Optimum Setting for Square Constellations
260(1)
6.8 Remarks
261(1)
6.A Appendix: Structures of Mach—Zehnder Modulator
261(2)
Problems
263(5)
References
268(3)
7 Direct Detection Optical Receivers 271(42)
7.1 Introduction
271(2)
7.2 Optical Receivers in Various Systems
273(1)
7.3 Receiver Components
274(5)
7.3.1 Photodiodes
276(3)
7.3.1.1 p-i-n Photodiode
277(1)
7.3.1.2 Avalanche Photodiodes (APDs)
277(1)
7.3.1.3 Quantum Efficiency and Responsivity
278(1)
7.3.1.4 High-Speed Photodetectors
278(1)
7.4 Detection and Noises
279(5)
7.4.1 Linear Channel
279(1)
7.4.2 Data Recovery
279(1)
7.4.3 Noises in Photodetectors
279(1)
7.4.4 Receiver Noises
280(2)
7.4.4.1 Shot Noises
281(1)
7.4.4.2 Quantum Shot Noise
281(1)
7.4.4.3 Thermal Noise
281(1)
7.4.5 Noise Calculations
282(2)
7.5 Performance Calculations for Binary Digital Optical Systems
284(14)
7.5.1 Signals Received
284(2)
7.5.2 Probability Distribution
286(2)
7.5.3 Minimum Average Optical Received Power
288(4)
7.5.3.1 Fundamental Limit: Direct Detection
290(1)
7.5.3.2 Equalized Signal Output
290(1)
7.5.3.3 Photodiode Shot Noise
291(1)
7.5.4 Total Output Noises and Pulse Shape Parameters
292(6)
7.5.4.1 FET Front-End Optical Receiver
294(1)
7.5.4.2 BJT Front-End Optical Receiver
295(3)
7.6 An HEMT-Matched Noise Network Preamplifier
298(7)
7.6.1 Matched Network for Noise Reduction
298(3)
7.6.2 Noise Theory and Equivalent Input Noise Current
301(4)
7.7 Trans Impedance Amplifier: Differential and Nondifferential Types
305(1)
7.8 Concluding Remarks
306(1)
7.A Appendix: Noise Equations
307(2)
Problems
309(1)
References
310(3)
8 Digital Coherent Optical Receivers 313(42)
8.1 Introduction
313(2)
8.2 Coherent Receiver Components
315(1)
8.3 Coherent Detection
316(16)
8.3.1 Optical Heterodyne Detection
319(6)
8.3.1.1 ASK Coherent System
320(3)
8.3.1.2 PSK Coherent System
323(2)
8.3.1.3 FSK Coherent System
325(1)
8.3.2 Optical Homodyne Detection
325(7)
8.3.2.1 Detection and Optical PLL
325(2)
8.3.2.2 Detection of Quantum Limit
327(1)
8.3.2.3 Linewidth Influences
328(4)
8.4 Self-Coherent Detection and Electronic DSP
332(5)
8.4.1 Coherent and Incoherent Receiving Techniques
334(3)
8.4.2 Digital Processing in Advanced Optical Communication Systems
337(1)
8.5 Digital Signal Processing associated with Coherent Optical Receiver
337(9)
8.5.1 Overview DSP-Assisted Coherent Reception
337(1)
8.5.2 Polarization Multiplexed Coherent Reception: Analog Section
338(6)
8.5.3 DSP-Based Phase Estimation and Correction of Phase Noise and Nonlinear Effects
344(1)
8.5.4 DSP-Based Forward Phase Estimation of Optical Coherent Receivers of QPSK Modulation Format
345(1)
8.6 Coherent Receiver Analysis
346(5)
8.6.1 Shot-Noise-Limited Receiver Sensitivity
350(1)
8.7 Remarks
351(1)
Problems
352(1)
References
353(2)
9 EDF Amplifiers and Simulink® Models 355(46)
9.1 Introductory Remarks
355(1)
9.2 Fundamental and Theoretical Issues of EDFAs
356(5)
9.2.1 EDFA Configuration
356(2)
9.2.2 EDFA Operational Principles
358(1)
9.2.3 Pump Wavelength and Absorption Spectrum
358(3)
9.2.3.1 Pump Mechanism
359(1)
9.2.3.2 Amplifier Noises
360(1)
9.2.3.3 Amplifier Gain Modulation
361(1)
9.3 EDFAs in Long-Haul Transmission Systems
361(8)
9.3.1 EDFA Simulation Model
362(1)
9.3.2 Amplifier Parameters
363(3)
9.3.3 EDFAs Dynamic Model
366(2)
9.3.3.1 EDFA Steady-State Modeling Principles
367(1)
9.3.3.2 Population Inversion Factor
368(1)
9.3.4 Amplifier Noises
368(1)
9.3.4.1 ASE Noise Model
368(1)
9.3.4.2 Other Noise Sources
368(1)
9.4 EDFA Simulation Model
369(29)
9.4.1 EDFA MATLAB® Simulink® Model
369(1)
9.4.2 Simulator Design Outline
370(1)
9.4.3 Simulator Design Process
371(1)
9.4.4 Simulator Requirement
372(1)
9.4.5 Simulator Design Assumptions
372(2)
9.4.5.1 Sampling Time Assumption
372(1)
9.4.5.2 Signal Streams
372(1)
9.4.5.3 EDFA Simulink® Simulation Model Assumption
372(1)
9.4.5.4 System Initialization
373(1)
9.4.6 EDFA Simulator Modeling
374(1)
9.4.6.1 Using the EDFA Simulator
374(1)
9.4.6.2 Signal Data Stream Modeling
374(1)
9.4.7 Pump Source
375(7)
9.4.7.1 Pumping Wavelength
376(1)
9.4.7.2 Pump Modulation
376(1)
9.4.7.3 EDF Modeling
377(1)
9.4.7.4 EDFAs Dynamic Gain Model
377(2)
9.4.7.5 EDFAs Steady State Gain Model
379(1)
9.4.7.6 Population Inversion Factor Modeling
380(1)
9.4.7.7 Amplifier Noise Modeling
381(1)
9.4.8 Simulink® EDFA Simulator: Execution Procedures
382(13)
9.4.8.1 Amplification in the L-Band
385(7)
9.4.8.2 Multi-Channel Operation of EDFA
392(1)
9.4.8.3 ASE Measurement
393(1)
9.4.8.4 Pump Wavelength Testing
394(1)
9.4.8.5 Gain Pump Modulation Effect
394(1)
9.4.9 Samples of the Simulink® Simulator
395(9)
9.4.9.1 The EDFA Simulator
395(1)
9.4.9.2 EDFA Simulator Inspection Scopes
396(2)
9.5 Concluding Remarks
398(1)
References
398(3)
10 MATLAB® Simulink® Modeling of Raman Amplification and Integration in Fiber Transmission Systems 401(46)
10.1 Introduction
401(2)
10.2 ROA versus EDFA
403(1)
10.3 Raman Amplification
404(3)
10.3.1 Principles
404(1)
10.3.2 Raman Amplification Coupled Equations
405(2)
10.4 Raman and Fiber Propagation under Linear and Nonlinear Fiber Dispersions
407(10)
10.4.1 Propagation Equation
407(1)
10.4.2 SSMF and DCF as Raman Fibers
408(6)
10.4.3 Noise Figure
414(3)
10.4.4 Dispersion
417(1)
10.5 Nonlinear Raman Gain/Scattering Schrodinger Equation
417(3)
10.5.1 Fiber Nonlinearities
418(1)
10.5.2 Dispersion
419(1)
10.5.3 Split-Step Fourier Method
419(1)
10.5.4 Gaussian Pulses, Eye Diagrams, and Bit Error Rate
420(1)
10.6 Raman Amplification and Gaussian Pulse Propagation
420(16)
10.6.1 Fiber Profiles
420(1)
10.6.2 Gaussian Pulse Propagation
421(7)
10.6.2.1 Bidirectional Pumping Case
422(1)
10.6.2.2 Forward Pumping Case
422(1)
10.6.2.3 Backward Pumping Case
423(1)
10.6.2.4 Back-to-Back Performance
424(1)
10.6.2.5 Propagation under No Amplification
425(1)
10.6.2.6 Propagation under Fiber Raman Amplification
425(1)
10.6.2.7 EDFA Amplification over 99 km Fiber (1 km Mismatch)
426(1)
10.6.2.8 Distributed Raman Amplification over 99 km Fiber (1 km Mismatch)
426(2)
10.6.2.9 Hybrid Amplification
428(1)
10.6.3 Long-Haul Optically Amplified Transmission
428(8)
10.7 Concluding Remarks
436(1)
Problems
437(1)
10.A Appendices
438(6)
References
444(3)
11 Digital Optical Modulation Transmission Systems 447(34)
11.1 Advanced Photonic Communications and Challenging Issues
447(2)
11.1.1 Background
447(1)
11.1.2 Challenging Issues
448(1)
11.2 Enabling Technologies
449(3)
11.2.1 Digital Modulation Formats
449(2)
11.2.2 Incoherent Optical Receivers
451(1)
11.3 Return-to-Zero Optical Pulses
452(6)
11.3.1 Generation Principles
452(2)
11.3.2 Phasor Representation
454(4)
11.3.2.1 Phasor Representation for CS-RZ Modulation
455(2)
11.3.2.2 Phasor Representation for RZ33 Modulation
457(1)
11.4 Differential Phase Shift Keying (DPSK)
458(3)
11.4.1 Background
458(1)
11.4.2 Optical DPSK Transmitter
459(1)
11.4.3 Incoherent Detection of Optical DPSK
460(1)
11.5 Minimum Shift Keying
461(9)
11.5.1 CPFSK Approach
461(4)
11.5.1.1 Theoretical Background
461(2)
11.5.1.2 Proposed Generation Scheme
463(2)
11.5.2 ODQPSK Approach
465(3)
11.5.2.1 Theoretical Background
465(1)
11.5.2.2 Proposed Generation Scheme
465(3)
11.5.3 Incoherent Detection of Optical MSK
468(2)
11.5.3.1 MZDI Balanced Receiver
468(1)
11.5.3.2 Optical Frequency Discrimination Receiver
469(1)
11.6 Dual-Level MSK
470(3)
11.6.1 Theoretical Background
470(1)
11.6.2 Proposed Generation Scheme
471(1)
11.6.3 Incoherent Detection of Optical Dual-Level MSK
472(1)
11.7 Spectral Characteristics of Advanced Modulation Formats
473(3)
11.8 Summary
476(1)
References
476(5)
12 Design of Optical Communications Systems 481(40)
12.1 Introduction
481(4)
12.1.1 Remarks
481(1)
12.1.2 Structure of DWDM Long-Haul Transmission Systems
482(3)
12.2 Long-Haul Optical Transmission Systems
485(25)
12.2.1 Intensity Modulation Direct Detection Systems
485(3)
12.2.2 Loss-Limited Optical Communications Systems
488(1)
12.2.3 Dispersion-Limited Optical Communications Systems
488(1)
12.2.4 System Preliminary Design
489(4)
12.2.4.1 Single-Span Optical Transmission System
489(1)
12.2.4.2 Power Budget
489(1)
12.2.4.3 Rise Time/Dispersion Budget
490(2)
12.2.4.4 Multiple-Span Optical Transmission System
492(1)
12.2.5 Gaussian Approximation
493(2)
12.2.6 System Preliminary Design under Nonlinear Effects
495(2)
12.2.6.1 Link Budget Measurement
495(1)
12.2.6.2 System Margin Measurement
495(2)
12.2.7 Some Notes on the Design of Optical Transmission Systems
497(7)
12.2.7.1 Allocations of Wavelength Channels
499(3)
12.2.7.2 Link Design Process
502(1)
12.2.7.3 Link Budget Considerations
502(2)
12.2.8 Link Budget Calculations under Linear and Nonlinear Impairments
504(6)
12.2.8.1 Power Budget
504(1)
12.2.8.2 System Impairments
505(1)
12.2.8.3 Power and Time Eyes
505(1)
12.2.8.4 Dispersion Tolerance Because of Wavelength Channels and Nonlinear Effects
506(4)
12.2.9 Engineering an OADM Transmission Link
510(1)
12.3 Appendix: Power Budget
510(7)
12.3.1 Power Budget Estimation: An Example
511(2)
12.3.2 Signal to Noise Ratio (SNR) and Optical SNR
513(2)
12.3.3 TIA: Differential and Nondifferential Types
515(2)
Problems
517(3)
References
520(1)
13 Self-Coherent Optically Amplified Digital Transmission Systems: Techniques and Simulink® Models 521(104)
13.1 ASK Modulation Formats Transmission Models
521(8)
13.1.1 Introductory Remarks
522(1)
13.1.2 Components Revisited for Advanced Optical Communication System
523(2)
13.1.3 Optical Sources
525(1)
13.1.4 Optical Modulators
526(1)
13.1.5 Mach—Zehnder (MZ) Intensity Modulators Revisited
527(2)
13.1.5.1 Single-Drive MZIM
527(1)
13.1.5.2 Dual-Drive MZIM
528(1)
13.2 Transmission Loss and Dispersion Revisited
529(2)
13.2.1 Nonlinear Effects
529(1)
13.2.2 Signal Propagation Model
530(1)
13.2.2.1 Nonlinear Schrodinger Propagation Equation
530(1)
13.2.2.2 Low-Pass Equivalent Model: Linear Operating Region
530(1)
13.3 Modulation Formats
531(10)
13.3.1 NRZ or NRZ—ASK
532(1)
13.3.2 RZ (or RZ—ASK)
533(1)
13.3.3 Return-to-Zero Optical Pulses
534(7)
13.3.3.1 Generation
534(3)
13.3.3.2 Phasor Representation
537(4)
13.4 Differential Phase Shift Keying (DPSK)
541(15)
13.4.1 NRZ—DPSK
542(1)
13.4.2 RZ—DPSK
542(1)
13.4.3 Receiver
543(1)
13.4.4 Simulink® Models
544(12)
13.4.4.1 Bernoulli Binary Generator
544(2)
13.4.4.2 DFB Laser
546(1)
13.4.4.3 Mach—Zehnder Interferometric Modulator
547(1)
13.4.4.4 Pulse Carver
547(2)
13.4.4.5 Data Modulator
549(1)
13.4.4.6 Differential Data Encoder
550(2)
13.4.4.7 Back-to-Back Receiver
552(1)
13.4.4.8 Eye Diagram
553(3)
13.4.4.9 Signal Propagation
556(1)
13.4.4.10 Bit Error Rate (BER)
556(1)
13.5 DQPSK Modulation Formats Transmission Models
556(9)
13.5.1 DQPSK Optical System Components
559(1)
13.5.1.1 DQPSK Transmitter
559(1)
13.5.2 DQPSK Receiver
560(5)
13.5.2.1 Mach—Zehnder Delay Interferometer (MZDI)
560(1)
13.5.2.2 Photodiode
561(1)
13.5.2.3 Noise Sources
562(1)
13.5.2.4 Digital Data Sampling
562(1)
13.5.2.5 Pulse Shapes
562(1)
13.5.2.6 MATLAB® Simulink® Simulator
563(2)
13.6 PDM-QAM
565(14)
13.6.1 PDM-QPSK
565(9)
13.6.1.1 System Configuration
565(3)
13.6.1.2 Measurement Setup for LOFO
568(6)
13.6.2 PDM-16 QAM Transmission Systems
574(5)
13.7 MSK Transmission Model
579(19)
13.7.1 Introductory Remarks
579(3)
13.7.2 Generation of Optical MSK-Modulated Signals
582(8)
13.7.2.1 Optical MSK Transmitter Using Two Cascaded EO Phase Modulators
582(2)
13.7.2.2 Generating Optical M-Ary CPFSK Format
584(1)
13.7.2.3 Detection of M-Ary CPFSK-Modulated Optical Signal
584(1)
13.7.2.4 Optical MSK Transmitter Using Parallel Mach-Zehnder Intensity Modulators (I-Q Approach)
585(5)
13.7.3 Optical Binary-Amplitude MSK Format
590(8)
13.7.3.1 Generation
590(3)
13.7.3.2 Detection
593(1)
13.7.3.3 Typical Simulation Results: Transmission Performance of Linear and Nonlinear Optical MSK Systems
594(4)
13.8 Star-QAM Transmission Systems for 100 Gb/s Capacity
598(4)
13.8.1 Introduction
599(1)
13.8.2 Design of 16-QAM Signal Constellation
600(1)
13.8.3 Star 16-QAM
600(2)
13.8.3.1 Signal Constellation
600(1)
13.8.3.2 Optimum Ring Ratio for Star Constellation
601(1)
13.8.4 Square 16-QAM
602(1)
13.8.5 Offset-Square 16-QAM
602(1)
13.9 8-DPSK_2-ASK 16-Star QAM
602(7)
13.9.1 Configuration of 8-DPSK_2-ASK Optical Transmitter
603(2)
13.9.2 Configuration of 8-DPSK_2-ASK Detection Scheme
605(1)
13.9.3 Transmission Performance of 100 Gb/s 8-DPSK_2-ASK Scheme
605(1)
13.9.4 Power Spectrum
605(1)
13.9.5 Receiver Sensitivity and Dispersion Tolerance
606(2)
13.9.6 Long-Haul Transmission
608(1)
13.10 Appendix: Simulink® and Simulation Guidelines
609(14)
13.10.1 MATLAB® Simulink®
609(1)
13.10.2 Guide for Use of Simulink® Models
610(5)
13.10.3 MATLAB® Files
615(12)
13.10.3.1 Initialization File
615(3)
13.10.3.2 Propagation of Optical Signals over a Single-Mode Optical Fiber—SSMF
618(3)
13.10.3.3 BER Evaluation
621(2)
13.10.3.4 Linking Initialization File and Other Related Files Such as ssprop_matlab_modified.m with the Model
623(1)
References
623(2)
14 Tbps Optical Transmission Systems: Digital Processing-Based Coherent Reception 625(46)
14.1 Introduction
625(2)
14.2 Quadrature Phase Shift Keying Systems
627(9)
14.2.1 Carrier Phase Recovery
627(1)
14.2.2 112G QPSK Coherent Transmission Systems
627(3)
14.2.3 I-Q Imbalance Estimation Results
630(1)
14.2.4 Skew Estimation
630(3)
14.2.5 Fractionally Spaced Equalization of CD and PMD
633(1)
14.2.6 Linear, Nonlinear Equalization and Back-Propagation Compensation of Linear and Nonlinear Phase Distortion
633(3)
14.3 16 QAM Systems
636(4)
14.4 Tb/s Superchannel Transmission Systems
640(14)
14.4.1 Overview
640(1)
14.4.2 Nyquist Pulse and Spectra
640(3)
14.4.3 Superchannel System Requirements
643(1)
14.4.4 System Structure
643(7)
14.4.4.1 DSP-Based Coherent Receiver
643(3)
14.4.4.2 Optical Fourier Transform—Based Structure
646(2)
14.4.4.3 Processing
648(2)
14.4.5 Timing Recovery in Nyquist QAM Channel
650(2)
14.4.6 128 Gb/s 16 QAM Superchannel Transmission
652(1)
14.4.7 450 Gb/s 32 QAM Nyquist Transmission Systems
653(1)
14.5 Non-DCF 1 and 2 Tb/s Superchannel Transmission Performance
654(13)
14.5.1 Transmission Platform
654(3)
14.5.2 Performance
657(17)
14.5.2.1 Tb/s Pretransmission Test Using Three Adjacent Subchannels
657(2)
14.5.2.2 1, 2, or N Tb/s Transmission
659(4)
14.5.2.3 Tbps Transmission Incorporating FEC at Coherent DSP Receiver
663(1)
14.5.2.4 Coding Gain of FEC and Transmission Simulation
663(4)
14.6 Multicarrier Scheme Comparison
667(1)
14.7 Remarks and Challenges
668(1)
References
669(2)
15 Digital Signal Processing for Optical Transmission Systems 671(66)
15.1 Introduction
671(3)
15.2 General Algorithms for Optical Communications Systems
674(17)
15.2.1 Linear Equalization
674(12)
15.2.1.1 Basic Assumptions
675(1)
15.2.1.2 Zero-Forcing Linear Equalization (ZF-LE)
676(1)
15.2.1.3 ZF-LE for Fiber as Transmission Channel
677(1)
15.2.1.4 Feedback Transversal Filter
678(1)
15.2.1.5 Tolerance to Additive Gaussian Noises
679(2)
15.2.1.6 Equalization with Minimizing MSE in Equalized Signals
681(1)
15.2.1.7 Constant Modulus Algorithm for Blind Equalization and Carrier Phase Recovery
682(4)
15.2.2 Nonlinear Equalizer (NLE) or Decision Feedback Equalizers (DFE)
686(5)
15.2.2.1 Decision Directed Cancellation of ISI
686(3)
15.2.2.2 Zero-Forcing Nonlinear Equalization (ZF-NLE)
689(1)
15.2.2.3 Linear and Nonlinear Equalizations of Factorized Channel Response
690(1)
15.2.2.4 Equalization with Minimizing MSE in Equalized Signals
691(1)
15.3 Maximum Likelihood Sequence Detection (MLSD) and Viterbi
691(8)
15.3.1 Nonlinear MLSE
692(3)
15.3.1.1 Trellis Structure and Viterbi Algorithm
692(2)
15.3.1.2 Optical Fiber as a Finite State Machine
694(1)
15.3.1.3 Construction of State Trellis Structure
695(1)
15.3.2 Shared Equalization between Transmitter and Receivers
695(4)
15.3.2.1 Equalizers at the Transmitter
695(2)
15.3.2.2 Shared Equalization
697(2)
15.4 Maximum a Posteriori (MAP) Technique for Phase Estimation
699(5)
15.4.1 Method
699(1)
15.4.2 Estimates
699(5)
15.5 Carrier Phase Estimation
704(8)
15.5.1 Remarks
704(1)
15.5.2 Correction of Phase Noise and Nonlinear Effects
705(1)
15.5.3 Forward Phase Estimation QPSK Optical Coherent Receivers
705(2)
15.5.4 Carrier Recovery in Polarization Division Multiplexed Receivers: A Case Study
707(5)
15.5.4.1 FO Oscillations and Q-Penalties
707(2)
15.5.4.2 Algorithm and Demonstration of Carrier Phase Recovery
709(3)
15.6 Systems Performance of MLSE Equalizer-MSK Optical Transmission Systems
712(15)
15.6.1 MLSE Equalizer for Optical MSK Systems
712(3)
15.6.1.1 Configuration of MLSE Equalizer in Optical Frequency Discrimination Receiver (OFDR)
712(1)
15.6.1.2 MLSE Equalizer with Viterbi Algorithm
713(1)
15.6.1.3 MLSE Equalizer with Reduced-State Template Matching
714(1)
15.6.2 MLSE Scheme Performance
715(12)
15.6.2.1 Performance of MLSE Schemes in 40 Gb/s Transmission Systems
715(1)
15.6.2.2 Transmission of 10 Gb/s Optical MSK Signals over 1472 km SSMF Uncompensated Optical Link
716(2)
15.6.2.3 Performance Limits of Viterbi-MLSE Equalizers
718(4)
15.6.2.4 Viterbi-MLSE Equalizers for PMD Mitigation
722(4)
15.6.2.5 On the Uncertainty and Transmission Limitation of Equalization Process
726(1)
15.7 MIMO Equalization
727(8)
15.7.1 Generic MIMO Equalization Process
727(5)
15.7.2 Training-Based MIMO Equalization
732(3)
15.8 Remarks on References
735(1)
References
735(2)
Appendix A: Technical Data of Single-Mode Optical Fibers 737(14)
Appendix B: RMS Definition and Power Measurement 751(4)
Appendix C: Power Budget 755(8)
Appendix D: How to Relate the Rise/Fall Time with the Frequency Response of Network and Power Budget Analyses for Optical Link Design and in Experimental Platforms 763(44)
Appendix E: Problems on Optical Fiber Communication Systems 807(44)
Index 851
Le Nguyen Binh is a technical director at the European Research Center of Huawei Technologies Co., Ltd. in Munich, Germany. He is the editor, author, and/or coauthor of numerous books, as well as the editor of CRC Press Optics and Photonics series.