Muutke küpsiste eelistusi

E-raamat: Optical Illusions in Rome

  • Formaat: 80 pages
  • Sari: Spectrum
  • Ilmumisaeg: 30-Jun-2020
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470455286
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 66,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 80 pages
  • Sari: Spectrum
  • Ilmumisaeg: 30-Jun-2020
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470455286
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Optical Illusions in Rome is a beautifully written and richly illustrated guide that takes the reader on a tour through ingenious uses of geometry to create illusory impressions of space and grandeur in Italian Renaissance art and architecture in the Eternal City. The book takes us to some of the most striking and historically important uses of optical illusion and includes works of Peruzzi, Borromini, and Pozzo. The artworks are analyzed geometrically and placed in their historical context. The notes on visiting the art described make the volume the perfect companion for a study trip to Rome. A chapter on the principles of perspective geometry and a collection of exercises make the book a wonderful resource for a module on perspective in a geometry or art history course. The mathematical discussion is kept at a level accessible to a reader with a familiarity with high school geometry.

Kirsti Andersen is a distinguished historian of mathematics and emerita faculty at Aarhus University. Her previous book, The Geometry of an Art, is widely recognized as the definitive work on the history of the use of perspective in European art. Viktor Blasjo, the translator, is a historian of mathematics on the faculty at Utrecht University. Blasjo has won both the Ford and Polya prizes for expository writing from the Mathematical Association of America.
Translator's Introduction v
Acknowledgments ix
Introduction 1(4)
Chapter 1 Trompe L'œil On walls
5(12)
1 Expansions of rooms in antiquity
5(2)
2 Expansions of rooms in the Renaissance
7(1)
3 Peruzzi and the Villa Farnesina
7(2)
4 The virtual expansion of the Sala delle prospettive
9(4)
5 The Renaissance impact of Peruzzi's Sala delle prospettive
13(1)
6 Theatre decors
14(3)
Chapter 2 Three-Dimensional Trompe L'œil
17(12)
1 Borromini and Bernini
18(1)
2 Borromini's colonnade in Palazzo Spada
18(2)
3 The eye point of Borromini's colonnade
20(1)
4 The length of the apparent colonnade
21(2)
5 A later addition to Borromini's colonnade
23(1)
6 Bernini's royal staircase
23(3)
7 Bernini's design of St. Peter's Square
26(3)
Chapter 3 The Anamorphosis in Trinita Dei Monti
29(8)
1 The order of the Minims
29(2)
2 Niceron's construction of an anamorphic grid
31(1)
3 Maignan's anamorphosis
31(4)
4 Mirror anamorphoses
35(2)
Chapter 4 Ceilings As Image Surfaces
37(14)
1 The order of the Jesuits
37(1)
2 Pozzo, the master of illusionistic art
38(2)
3 The dome of Santlgnazio
40(5)
4 The decoration of the central nave of Sant'lgnazio
45(6)
Chapter 5 Some Results from Perspective Theory
51(10)
Chapter 6 Exercises
61(8)
1 Exercises for
Chapter 1
61(1)
2 Exercises for
Chapter 2
62(3)
3 Exercises for
Chapter 3
65(1)
4 Exercises for
Chapter 4
66(1)
5 Exercises for
Chapter 5
67(2)
Notes for the Traveller 69(2)
Endnotes 71(2)
Bibliography 73(5)
Sources of the Illustrations 78
Kirsti Andersen, Aarhus University, Denmark.