Muutke küpsiste eelistusi

E-raamat: Optical Magnetometry

Edited by (University of California, Berkeley), Edited by (California State University, East Bay)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Mar-2013
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781107302396
  • Formaat - PDF+DRM
  • Hind: 166,72 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Mar-2013
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781107302396

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Featuring chapters written by leading experts in magnetometry, this book provides comprehensive coverage of the principles, technology and diverse applications of optical magnetometry, from testing fundamental laws of nature to detecting biomagnetic fields and medical diagnostics. Readers will find a wealth of technical information, from antirelaxation-coating techniques, microfabrication and magnetic shielding to geomagnetic-field measurements, space magnetometry, detection of biomagnetic fields, detection of NMR and MRI signals and rotation sensing. The book includes an original survey of the history of optical magnetometry and a chapter on the commercial use of these technologies. The book is supported by extensive online material, containing historical overviews, derivations, sideline discussion, additional plots and tables, available at www.cambridge.org/9781107010352. As well as introducing graduate students to this field, the book is also a useful reference for researchers in atomic physics.

Muu info

Comprehensive coverage of the principles, technology and diverse applications of optical magnetometry for graduate students and researchers in atomic physics.
List of contributors
xiii
Preface xvi
PART I Principles and techniques
1(248)
1 General principles and characteristics of optical magnetometers
3(22)
D. F. Jackson Kimball
E. B. Alexandrov
D. Budker
1.1 Introduction
3(5)
1.1.1 Fundamental sensitivity limits
4(1)
1.1.2 Zeeman shifts and atomic spin precession
5(3)
1.1.3 Quantum beats and dynamic range
8(1)
1.2 Model of an optical magnetometer
8(5)
1.3 Density matrix and atomic polarization moments
13(3)
1.4 Sensitivity and accuracy
16(4)
1.4.1 Variational sensitivity (short-term resolution) and long-term stability
16(2)
1.4.2 Parameter optimization
18(1)
1.4.3 Absolute accuracy and systematic errors
19(1)
1.5 Vector and scalar magnetometers
20(1)
1.6 Applications
21(4)
2 Quantum noise in atomic magnetometers
25(15)
M. V. Romalis
2.1 Introduction
25(1)
2.2 Spin-projection noise
26(1)
2.3 Faraday rotation measurements
26(1)
2.4 Quantum back-action
27(1)
2.5 Time correlation of spin-projection noise
28(2)
2.6 Conditions for spin-noise dominance
30(2)
2.7 Spin projection limits on magnetic field sensitivity
32(4)
2.8 Spin squeezing and atomic magnetometry
36(1)
2.9 Conclusion
37(3)
3 Quantum noise, squeezing, and entanglement in radiofrequency optical magnetometers
40(20)
K. Jensen
E. S. Polzik
3.1 Sources of noise
40(3)
3.1.1 Atomic projection noise
40(1)
3.1.2 Photon shot noise
41(1)
3.1.3 Back-action noise and QND measurements
42(1)
3.1.4 Technical (classical) noise
42(1)
3.1.5 Entanglement and spin squeezing
42(1)
3.2 A pulsed radiofrequency magnetometer and the projection noise limit
43(3)
3.2.1 Pulsed RF magnetometry
44(1)
3.2.2 Sensitivity and bandwidth
45(1)
3.3 Light-atom interaction
46(4)
3.3.1 A spin-polarized atomic ensemble interacting with polarized light
47(1)
3.3.2 Conditional spin squeezing
48(1)
3.3.3 Larmor precession, back-action noise, and two atomic ensembles
48(1)
3.3.4 Swap and squeezing interaction
49(1)
3.4 Demonstration of high-sensitivity, projection-noise-limited magnetometry
50(4)
3.4.1 Setup, pulse sequence, and procedure
50(2)
3.4.2 The projection-noise-limited magnetometer
52(2)
3.5 Demonstration of entanglement-assisted magnetometry
54(3)
3.6 Conclusions
57(3)
4 Mx and Mz magnetometers
60(25)
E. B. Alexandrov
A. K. Vershovskiy
4.1 Dynamics of magnetic resonance in an alternating field
60(3)
4.1.1 Bloch equations and Bloch sphere
60(2)
4.1.2 Types of magnetic resonance signals: Mz and Mx signals
62(1)
4.2 Mz and Mx magnetometers: general principles
63(10)
4.2.1 Advantages and disadvantages of Mz magnetometers
66(1)
4.2.2 Advantages and disadvantages of Mx magnetometers
67(5)
4.2.3 Attempts to combine advantages of Mx and Mz magnetometers: Mx-Mz tandems
72(1)
4.3 Applications: radio-optical Mx and Mz magnetometers
73(9)
4.3.1 Alkali Mz magnetometers
73(2)
4.3.2 Mx magnetometers
75(4)
4.3.3 Mx-Mz tandems
79(3)
4.4 Summary: Mx and Mz scheme limitations, prospects, and application areas
82(3)
5 Spin-exchange-relaxation-free (SERF) magnetometers
85(19)
I. Savukov
S. J. Seltzer
5.1 Introduction
85(1)
5.2 Spin-exchange collisions
86(6)
5.2.1 The density-matrix equation
86(4)
5.2.2 Simple model of spin exchange
90(2)
5.3 Bloch equation description
92(3)
5.4 Experimental realization
95(6)
5.4.1 Classic SERF atomic magnetometer arrangement
95(3)
5.4.2 Zeroing the magnetic field
98(1)
5.4.3 Use of antirelaxation coatings
98(1)
5.4.4 Comparison with SQUIDs
99(2)
5.5 Fundamental sensitivity
101(3)
6 Optical magnetometry with modulated light
104(21)
D. F. Jackson Kimball
S. Pustelny
V. V. Yashchuk
D. Budker
6.1 Introduction
104(2)
6.2 Typical experimental arrangements
106(2)
6.3 Resonances in the magnetic field dependence
108(5)
6.3.1 Frequency modulation
108(3)
6.3.2 Amplitude modulation
111(2)
6.3.3 Polarization modulation
113(1)
6.4 Effects at high light powers
113(3)
6.5 Nonlinear Zeeman effect
116(2)
6.6 Magnetometric measurements with modulated light
118(4)
6.7 Conclusion
122(3)
7 Microfabricated atomic magnetometers
125(17)
S. Knappe
J. Kitching
7.1 Introduction
125(1)
7.2 Sensitivity scaling with size
126(5)
7.3 Sensor fabrication
131(2)
7.4 Vapor cells
133(1)
7.5 Heating and thermal management
134(1)
7.6 Performance
135(2)
7.7 Applications of microfabricated magnetometers
137(2)
7.8 Outlook
139(3)
8 Optical magnetometry with nitrogen-vacancy centers in diamond
142(25)
V.M. Acosta
D. Budker
P. R. Hemmer
J. R. Maze
R. L. Walsworth
8.1 Introduction
142(2)
8.1.1 Comparison with existing technologies
143(1)
8.2 Historical background
144(2)
8.2.1 Single-spin optically detected magnetic resonance
145(1)
8.3 NV center physics
146(6)
8.3.1 Intersystem crossing and optical pumping
146(2)
8.3.2 Ground-state level structure and ODMR-based magnetometry
148(2)
8.3.3 Interaction with environment
150(2)
8.4 Experimental realizations
152(9)
8.4.1 Near-field scanning probes and single-NV magnetometry
152(5)
8.4.2 Wide-field array magnetic imaging
157(1)
8.4.3 NV-ensemble magnetometers
158(3)
8.5 Outlook
161(6)
9 Magnetometry with cold atoms
167(23)
W. Gawlik
J. M. Higbie
9.1 Introduction
167(1)
9.2 Experimental conditions
168(2)
9.2.1 Constraints and advantages of using cold atoms for magnetometry
168(1)
9.2.2 Cold samples of atoms above quantum degeneracy
168(2)
9.3 Linear Faraday rotation with trapped atoms
170(3)
9.4 Nonlinear Faraday rotation
173(3)
9.4.1 Low-field, DC magnetometry
173(1)
9.4.2 Coherence evolution
174(1)
9.4.3 High-field, amplitude-modulated magneto-optical rotation
175(1)
9.4.4 Paramagnetic nonlinear rotation
175(1)
9.5 Magnetometry with ultra-cold atoms
176(14)
9.5.1 Overview of ultra-cold atomic magnetometry methods
176(4)
9.5.2 Figures of merit
180(2)
9.5.3 Details of spinor magnetometry
182(3)
9.5.4 Comparison with thermal-atom magnetometry
185(2)
9.5.5 Applications
187(3)
10 Helium magnetometers
190(15)
R. E. Slocum
D. D. McGregor
A. W. Brown
10.1 Introduction
190(1)
10.2 Helium magnetometer principles of operation
191(11)
10.2.1 Helium resonance element
192(1)
10.2.2 Helium optical pumping radiation sources
192(2)
10.2.3 Optical pumping of metastable helium
194(2)
10.2.4 Observation of optically pumped helium
196(1)
10.2.5 Observation of magnetic resonance signals in optically pumped helium
197(5)
10.3 Conclusions
202(3)
11 Surface coatings for atomic magnetometry
205(20)
S. J. Seltzer
M.-A. Bouchiat
M. V. Balabas
11.1 Introduction and history
205(3)
11.2 Wall relaxation mechanisms
208(5)
11.2.1 Origin and time dependence of the disorienting interaction
208(1)
11.2.2 Methods of investigation
209(3)
11.2.3 Quantitative interpretation
212(1)
11.3 Coating preparation
213(4)
11.4 Light-induced atomic desorption (LIAD)
217(2)
11.5 Recent characterization methods
219(6)
12 Magnetic shielding
225(24)
V. V. Yashchuk
S.-K. Lee
E. Paperno
12.1 Introduction
225(1)
12.2 Ferromagnetic shielding
225(13)
12.2.1 Simplified estimation of ferromagnetic shielding efficiency for a static magnetic field
226(1)
12.2.2 Multilayer ferromagnetic shielding
227(5)
12.2.3 Optimization of permeability: annealing, degaussing, shaking, tapping
232(3)
12.2.4 Magnetic-field noise in ferromagnetic shielding
235(1)
12.2.5 Examples of ferromagnetic shielding systems
236(2)
12.3 Ferrite shields
238(3)
12.3.1 Permeability
238(1)
12.3.2 Fabrication and the effect of an air gap
239(1)
12.3.3 Thermal noise
240(1)
12.4 Superconducting shields
241(8)
12.4.1 Principles
242(1)
12.4.2 Materials and fabrication
243(1)
12.4.3 Image field
244(5)
PART II Applications
249(88)
13 Remote detection magnetometry
251(14)
S. M. Rochester
J. M. Higbie
B. Patton
D. Budker
R. Holzlohner
D. Bonaccini Calia
13.1 Introduction
251(1)
13.2 A remotely interrogated all-optical 87Rb magnetometer
252(4)
13.3 Magnetometry with mesospheric sodium
256(9)
14 Detection of nuclear magnetic resonance with atomic magnetometers
265(20)
M. P. Ledbetter
I. Savukov
S. J. Seltzer
D. Budker
14.1 Introduction
265(2)
14.2 The NMR Hamiltonian
267(1)
14.3 Challenges associated with detection of NMR using atomic magnetometers
268(1)
14.4 Remote detection
269(3)
14.5 Solenoid matching of Zeeman resonance frequencies
272(1)
14.6 Flux transformer
273(1)
14.7 Nuclear quadrupole resonance
274(1)
14.8 Zero-field nuclear magnetic resonance
275(7)
14.8.1 Thermally polarized zero-field NMR J spectroscopy
275(3)
14.8.2 Parahydrogen-enhanced zero-field NMR
278(3)
14.8.3 Zeeman effects on J-coupled multiplets
281(1)
14.9 Conclusions
282(3)
15 Space magnetometry
285(18)
B. Patton
A. W. Brown
R. E. Slocum
E. J. Smith
15.1 Introduction
285(2)
15.1.1 Achievements of space magnetometry
285(1)
15.1.2 Challenges unique to space magnetometers
286(1)
15.1.3 Magnetic sensors used in space missions
287(1)
15.2 Alkali-vapor magnetometers in space applications
287(6)
15.2.1 Initial development of Earth's-field alkali magnetometers
287(1)
15.2.2 Sensor design
288(1)
15.2.3 NASA missions employing alkali-vapor magnetometers
289(4)
15.3 Helium magnetometers in space applications
293(10)
15.3.1 Introduction
293(5)
15.3.2 Future helium space magnetometers
298(5)
16 Detection of biomagnetic fields
303(16)
A. Ben-Amar Baranga
T. G. Walker
R. T. Wakai
16.1 Sources of biomagnetism
303(1)
16.2 Development of biomagnetic field detection
304(4)
16.3 Medical applications
308(2)
16.4 Magnetocardiography with atomic magnetometers
310(3)
16.5 Magnetoencephalography with an atomic magnetometer
313(3)
16.6 Summary
316(3)
17 Geophysical applications
319(18)
M. D. Prouty
R. Johnson
I. Hrvoic
A. K. Vershovskiy
17.1 Airborne magnetometers and gradiometers
319(2)
17.2 Ground magnetometers/gradiometers
321(2)
17.3 Marine magnetometers/gradiometers
323(1)
17.4 Vector magnetometry with optically pumped magnetometers
324(5)
17.5 Earthquake studies
329(2)
17.6 Applications of magnetometers to detecting unexploded ordnance (UXO)
331(6)
17.6.1 Introduction to the problem
331(1)
17.6.2 Using magnetometers for UXO detection
332(1)
17.6.3 Mathematics of UXO detection
333(4)
PART III Broader impact
337(69)
18 Tests of fundamental physics with optical magnetometers
339(30)
D. F. Jackson Kimball
S. K. Lamoreaux
T. E. Chupp
18.1 Overview and introduction
339(2)
18.2 Searches for permanent electric dipole moments
341(11)
18.2.1 Basic experimental setup for an EDM experiment
344(1)
18.2.2 Sensitivity to EDMs
345(1)
18.2.3 Electric fields and coherence times for various systems
346(3)
18.2.4 Magnetometry and comagnetometry in EDM experiments
349(3)
18.3 Anomalous spin-dependent forces
352(9)
18.3.1 Background
352(3)
18.3.2 Experiments
355(6)
18.4 CPT and local Lorentz invariance tests
361(3)
18.5 Conclusion
364(5)
19 Nuclear magnetic resonance gyroscopes
369(18)
E. A. Donley
J. Kitching
19.1 Introduction
369(4)
19.2 NMR frequency shifts and relaxation
373(6)
19.2.1 Spin exchange
374(1)
19.2.2 Quadrupole surface frequency shifts
375(2)
19.2.3 General wall relaxation
377(1)
19.2.4 Magnetic-field gradients
377(1)
19.2.5 Noble-gas self-relaxation
378(1)
19.3 Alkali shifts and relaxation mechanisms
379(1)
19.4 Two-spin NMR gyroscope
379(2)
19.5 Comagnetometer
381(2)
19.6 Miniaturization
383(1)
19.7 Conclusion
383(4)
20 Commercial magnetometers and their application
387(19)
D. C. Hovde
M. D. Prouty
I. Hrvoic
R. E. Slocum
20.1 Introduction
387(1)
20.2 Specifications
388(10)
20.2.1 Noise
388(3)
20.2.2 Resolution
391(1)
20.2.3 Sensitivity
391(1)
20.2.4 Sample rate and cycle time
392(1)
20.2.5 Bandwidth
392(1)
20.2.6 Absolute error and drift
393(1)
20.2.7 Gradient tolerance
394(1)
20.2.8 Dead zones
395(1)
20.2.9 Heading error
395(2)
20.2.10 Range of measurement
397(1)
20.3 History of commercial magnetometry
398(5)
20.3.1 Fluxgate magnetometers
398(1)
20.3.2 SQUID magnetometers
399(1)
20.3.3 Proton-precession and Overhauser magnetometers
399(2)
20.3.4 Alkali metal magnetometers: rubidium, cesium, and potassium
401(1)
20.3.5 Helium-3 and helium-4 magnetometers
402(1)
20.4 Military applications
403(1)
20.5 Anticipated improvements
404(2)
Index 406
Dmitry Budker is Professor of Physics at the University of California at Berkeley, Faculty Scientist in the Nuclear Science Division, LBNL, and Co-founder and Scientist of Rochester Scientific, LLC. His research interests are related to the study of violation of discrete symmetries and the development and applications of the optical-magnetometry techniques. Derek Jackson Kimball is Associate Professor and Chair of the Department of Physics at California State University, East Bay. His research focuses on using techniques of experimental atomic physics and nonlinear optics for precision tests of the fundamental laws of physics.