Muutke küpsiste eelistusi

E-raamat: Optical Polarization in Biomedical Applications

  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

Arvustused

From the reviews:









"The authors take the reader on a journey through the theory of polarized light interaction in weakly and strongly scattering media . I believe this is a well-written book that is of high relevance . this book is a valuable addition to the literature on optics in biomedical applications, and I am convinced that it will serve as a source of inspiration for new researchers in this field, and as a valuable textbook for the biomedical optics community for years to come." (Alfons G. Hoekstra, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 109, 2008)

1 Introduction
1(6)
1.1 Light Interaction with Tissues
1(2)
1.2 Definitions of Polarized Light
3(4)
2 Tissue Structure and Optical Models
7(22)
2.1 Introduction
7(1)
2.2 Continuous and Discrete Tissue Models
8(1)
2.3 Scatterer Size Range and Distribution
9(2)
2.4 Refractive-Index Variations and Absorption
11(3)
2.5 Tissue Anisotropy
14(4)
2.6 Volume Fraction and Spatial Ordering of Particles
18(2)
2.7 Eye Tissue Optical Models
20(6)
2.8 Fractal Properties of Tissues and Cell Aggregates
26(2)
2.9 Summary
28(1)
3 Polarized Light Interactions with Weakly Scattering Media
29(16)
3.1 Introduction
29(1)
3.2 Noninteracting Particles
30(6)
3.3 Densely Packed Correlated Particles
36(6)
3.4 Summary
42(3)
4 Polarized Light Interactions with Strongly Scattering Media
45(24)
4.1 Introduction
45(1)
4.2 Multiple Scattering and Radiative Transfer Theory
46(6)
4.2.1 Vector Radiative Transfer Equation
46(2)
4.2.2 Scalar Radiative Transfer Equation
48(4)
4.3 Monte Carlo Simulation Technique
52(9)
4.4 Densely Packed Particle Systems
61(6)
4.5 Summary
67(2)
5 Polarization Properties of Tissues and Phantoms
69(16)
5.1 Introduction
69(1)
5.2 Light Scattering Matrix Meters
70(2)
5.3 LSM of Thin Tissue and Cell Layers
72(5)
5.4 Strongly Scattering Tissues and Phantoms
77(6)
5.5 Summary
83(2)
6 Polarization-Dependent Interference of Multiply Scattered Light
85(26)
6.1 Introduction
85(1)
6.2 Coherent Backscattering
86(5)
6.3 Polarization-Dependent Temporal Correlations of the Scattered Light
91(8)
6.4 Polarization Microstatistics of Speckles
99(4)
6.5 The Concept of Polarization-Correlation Universality
103(7)
6.6 Summary
110(1)
7 Decay of Light Polarization in Random Multiple Scattering Media
111(28)
7.1 The Similarity in Multiple Scattering of Coherent Light
111(8)
7.2 Influence of Scattering Anisotropy and Scattering Regime
119(5)
7.3 Residual Polarization of Incoherently Backscattered Light
124(3)
7.4 Polarization Decay in Absorbing Media
127(11)
7.5 Summary
138(1)
8 Degree of Polarization in Laser Speckles from Turbid Media
139(10)
8.1 Introduction
139(1)
8.2 Experiments and Simulation
140(6)
8.3 Discussion and Conclusions
146(3)
9 Monte Carlo Modeling of Polarization Propagation
149(12)
9.1 Introduction
149(1)
9.2 Method
150(2)
9.3 Results
152(7)
9.4 Summary
159(2)
10 Polarization-Sensitive Optical Coherence Tomography
161(16)
10.1 Introduction
161(1)
10.2 Experimental System: Serial Implementation
162(2)
10.3 Jones Calculus and Mueller Calculus
164(3)
10.4 Experimental System: Parallel Implementation
167(5)
10.5 Experimental Results
172(3)
10.6 Other Implementations
175(1)
10.7 Summary
176(1)
11 Biomedical Diagnostics and Imaging
177(48)
11.1 Introduction
177(1)
11.2 Imaging through Scattering Media and Tissues with Use of Polarized Light
177(4)
11.3 Transillumination Polarization Techniques
181(2)
11.4 Potentialities and Restrictions of Polarization Imaging with Backscattered Light
183(8)
11.5 Polarized Reflectance Spectroscopy of Tissues
191(1)
11.6 Glucose Sensing
192(7)
11.7 Cytometry and Bacteria Sensing
199(5)
11.8 Polarization Microscopy and Tissue Clearing
204(12)
11.9 Digital Photoelastic Analysis
216(2)
11.10 Fluorescence Polarization
218(5)
11.11 Summary
223(2)
Appendix 225(4)
Glossary 229(16)
References 245(34)
Index 279