Preface |
|
ix | |
Acknowledgments |
|
xi | |
About the Authors |
|
xiii | |
|
1 Introduction to Sensors |
|
|
1 | (32) |
|
|
1 | (2) |
|
|
3 | (4) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (4) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.3.4.2 Optical Power Meter |
|
|
10 | (1) |
|
1.3.4.3 Charge-Coupled Device |
|
|
11 | (1) |
|
1.4 Sensor Performance Parameters |
|
|
11 | (1) |
|
1.5 Biosensor Classifications |
|
|
12 | (15) |
|
1.5.1 Classification Based on Transducer |
|
|
13 | (1) |
|
1.5.1.1 Electrochemical Transducer |
|
|
14 | (2) |
|
1.5.1.2 Optical Transducer |
|
|
16 | (4) |
|
1.5.1.3 Mass-Sensitive Transducer |
|
|
20 | (1) |
|
1.5.1.4 Calorimetric Transducer |
|
|
20 | (1) |
|
1.5.1.5 Light-Addressable Potentiometric Transducer |
|
|
21 | (1) |
|
1.5.2 Classification Based on Bio-Receptors |
|
|
21 | (6) |
|
1.6 Biosensor Regeneration |
|
|
27 | (2) |
|
|
29 | (4) |
|
|
30 | (3) |
|
|
33 | (42) |
|
2.1 Resonance-Based Sensors |
|
|
33 | (1) |
|
|
34 | (21) |
|
|
34 | (10) |
|
|
44 | (4) |
|
2.2.3 Realization of Sensors |
|
|
48 | (7) |
|
|
55 | (9) |
|
2.3.1 Surface Plasmon Resonance |
|
|
55 | (1) |
|
|
55 | (3) |
|
|
58 | (1) |
|
2.3.1.3 Nearly Guided Wave SPR |
|
|
58 | (1) |
|
2.3.1.4 Waveguide-Coupled SPR |
|
|
59 | (1) |
|
2.3.1.5 Magneto-Optic SPR |
|
|
59 | (1) |
|
2.3.1.6 Fano Resonance SPR |
|
|
60 | (1) |
|
|
61 | (1) |
|
2.3.2 Lossy Mode Resonance |
|
|
61 | (1) |
|
2.3.3 Interferometric Resonance |
|
|
61 | (1) |
|
2.3.3.1 Fabry-Perot Interferometric Resonance |
|
|
62 | (2) |
|
2.3.3.2 Michelson Interferometric Resonance |
|
|
64 | (1) |
|
|
64 | (1) |
|
2.4 Developing LMR for Sensing Applications |
|
|
64 | (6) |
|
|
70 | (5) |
|
|
72 | (3) |
|
|
75 | (28) |
|
3.1 Optical Fiber as Sensor Element |
|
|
75 | (2) |
|
3.2 Factors Affecting Light Propagation |
|
|
77 | (7) |
|
3.2.1 Numerical Aperture and Acceptance Angle |
|
|
78 | (2) |
|
3.2.2 V-Number and Fiber Modes |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (2) |
|
3.3 Advantages of Fiber-Optic Sensors |
|
|
84 | (1) |
|
3.4 Parameters Tailoring Sensor Performance |
|
|
85 | (6) |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
88 | (1) |
|
3.4.4 Limit of Quantification |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
3.5 Designs of a Fiber-Optic Sensor Probe |
|
|
91 | (9) |
|
|
91 | (3) |
|
|
94 | (3) |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
100 | (3) |
|
|
100 | (3) |
|
|
103 | (62) |
|
4.1 Nanotechnology as a Sensing Platform |
|
|
104 | (3) |
|
4.2 Metallic Nanostructures and Synthesis |
|
|
107 | (20) |
|
|
109 | (1) |
|
|
109 | (3) |
|
|
112 | (6) |
|
4.2.1.3 Biological Methods |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (2) |
|
|
122 | (1) |
|
4.2.2.3 Biological Methods |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
123 | (2) |
|
|
125 | (1) |
|
4.2.3.3 Biological Methods |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
4.2.4.3 Biological Methods |
|
|
127 | (1) |
|
4.3 Effect of Nanostructures |
|
|
127 | (6) |
|
4.3.1 Shape of Nanoparticles |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
4.3.1.3 Magnetic Nanoparticles |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
131 | (1) |
|
4.3.4 Other Nanostructures |
|
|
132 | (1) |
|
4.4 Nanostructures for Sensing |
|
|
133 | (7) |
|
4.4.1 Single-Nanoparticle Sensors |
|
|
135 | (2) |
|
4.4.2 Surface-Enhanced Nanosensors |
|
|
137 | (3) |
|
|
140 | (17) |
|
4.5.1 Detection of Physical Parameters |
|
|
140 | (1) |
|
4.5.2 Environmental and Agricultural Monitoring |
|
|
141 | (9) |
|
4.5.3 Biological Applications and Biomarkers |
|
|
150 | (5) |
|
4.5.4 Surgical and Clinical Diagnostics |
|
|
155 | (2) |
|
|
157 | (8) |
|
|
157 | (8) |
|
5 Semiconductor Metal Oxide Sensors |
|
|
165 | (32) |
|
5.1 Role of SMO in Sensor Applications |
|
|
166 | (4) |
|
5.2 Properties Supporting Sensing |
|
|
170 | (4) |
|
5.2.1 Surface and Structure |
|
|
170 | (2) |
|
|
172 | (1) |
|
5.2.3 Catalytic/Chemical Activity and Stability |
|
|
172 | (1) |
|
5.2.4 Sensitivity and Reversibility |
|
|
173 | (1) |
|
5.3 Nanostructured Metal Oxides |
|
|
174 | (2) |
|
5.4 Mechanism of Gas Sensing and Applications |
|
|
176 | (13) |
|
5.4.1 SPR-Based SMO Gas Sensors |
|
|
178 | (5) |
|
5.4.2 LMR-Based SMO Gas Sensors |
|
|
183 | (6) |
|
|
189 | (5) |
|
|
194 | (3) |
|
|
195 | (2) |
|
6 Molecular-Imprinting-Based Sensors |
|
|
197 | (30) |
|
6.1 Basics of Molecular Imprinting |
|
|
198 | (9) |
|
6.1.1 Molecular-Imprinting Elements |
|
|
199 | (5) |
|
6.1.2 Synthesis Protocols |
|
|
204 | (3) |
|
6.2 Types of Molecular Imprinting |
|
|
207 | (4) |
|
6.2.1 Covalent Molecular Imprinting |
|
|
207 | (1) |
|
6.2.2 Noncovalent Molecular Imprinting |
|
|
208 | (1) |
|
6.2.3 Molecular Imprinting in Nanostructures |
|
|
209 | (2) |
|
6.3 Molecular-Imprinting Polymer as a Floor for Sensing |
|
|
211 | (1) |
|
|
212 | (10) |
|
|
212 | (5) |
|
6.4.2 Environmental Monitoring |
|
|
217 | (2) |
|
|
219 | (3) |
|
|
222 | (5) |
|
|
223 | (4) |
|
7 Summary and Future Outlook |
|
|
227 | (4) |
Index |
|
231 | |