Muutke küpsiste eelistusi

E-raamat: Optical Solitons: From Fibers to Photonic Crystals

(Research School of Physical Science & Engineering, Canberra, Australia), (Institute of Optics, University of Rochester, NY, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Jun-2003
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080538099
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 88,92 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Jun-2003
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080538099
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The current research into solitons and their use in fiber optic communications is very important to the future of communications. Since the advent of computer networking and high speed data transmission technology people have been striving to develop faster and more reliable communications media. Optical pulses tend to broaden over relatively short distances due to dispersion, but solitons on the other hand are not as susceptible to the effects of dispersion, and although they are subject to losses due to attenuation they can be amplified without being received and re-transmitted.

This book is the first to provide a thorough overview of optical solitons. The main purpose of this book is to present the rapidly developing field of Spatial Optical Solitons starting from the basic concepts of light self-focusing and self-trapping. It will introduce the fundamental concepts of the theory of nonlinear waves and solitons in non-integrated but physically realistic models of nonlinear optics including their stability and dynamics. Also, it will summarize a number of important experimental verification of the basic theoretical predictions and concepts covering the observation of self-focusing in the earlier days of nonlinear optics and the most recent experimental results on spatial solitons, vortex solitons, and soliton interaction & spiraling.

* Introduces the fundamental concepts of the theory of nonlinear waves and solitons through realistic models

* Material is based on authors' years of experience actively working in and researching the field

* Summarizes the most important experimental verification of the basic theories, predictions and concepts of this ever evolving field from the earliest studies to the most recent

Arvustused

"Here, readers can obtain all the important and theoretical and experimental information pertaining to optical solitons in a single, well-organized book that offers complete coverage of every variety of soliton wave. For the benefit of prosepctive readers, the book presents detailed experimental and theoretical information on vortex, vector, parametric, descrete, incoherent and magnetic solutions, as well as on various categories of solitons contained witinin these general catagories...A good table of contents is supported by a complete index. There are hundreds of references at the end of each chapter. There are also many useful graphs and figures in each chapter. Although there are no problems for the reader to solve, this volume could certainly serve as a textbook. The target readership of electrical engineers, optical engineers, and physicists interested in the area of optical solitons have a useful new book from two authors who continue to be at the leading edge of their field." --Optics and Photonics News, Dec. 2004

Muu info

The first book to provide a thorough overview of optical solitons--light pulses that maintain their shape over long distances.
Preface xv
Introduction
1(30)
Historical Background
1(2)
Spatial Optical Solitons
3(7)
Basic Concepts
4(1)
Nonlinear Response
5(2)
Nonlinear Schrodinger Equation
7(2)
Bright Spatial Solitons
9(1)
Temporal Optical Solitons
10(5)
Pulse Propagation in Optical Fibers
11(1)
Dispersion Parameter
12(1)
Spatiotemporal Dynamics
13(2)
Solutions of the NLS Equation
15(5)
Modulation Instability
15(2)
Inverse Scattering Transform Method
17(2)
Bright and Dark Solitons
19(1)
Solitons of Non-Kerr Media
20(5)
Generalized Nonlinearities
21(1)
Spatial Solitons and Linear Guided Waves
22(2)
Limitations of the NLS Equation
24(1)
Book Overview
25(6)
References
28(3)
Spatial Solitons
31(32)
Analytical Solutions
31(2)
Soliton Stability and Internal Modes
33(4)
Stability Criterion
37(6)
Linear Stability Analysis
37(1)
Vakhitov--Kolokolov Criterion
38(3)
Marginal Stability Point: Asymptotic Analysis
41(1)
Oscillatory Instabilities
42(1)
Embedded Solitons
43(3)
Soliton Collisions
46(7)
Collisions of Kerr Solitons
47(1)
Collisions of non-Kerr Solitons
48(1)
Chaotic and Fractal Soliton Scattering
49(3)
Multisoliton Interactions
52(1)
Breathers and Soliton Bound States
53(3)
Experimental Results
56(7)
References
60(3)
Temporal Solitons
63(41)
Fiber Solitons
63(3)
Nonlinear Schrodinger Equation
64(1)
Temporal Soliton Dynamics
65(1)
Soliton-Based Communications
66(4)
Information Transmission with Solitons
67(1)
Soliton Interaction
68(2)
Loss-Managed Solitons
70(7)
Lumped Amplification
70(3)
Distributed Amplification
73(2)
Experimental Progress
75(2)
Dispersion-Managed Solitons
77(8)
Dispersion-Decreasing Fibers
77(1)
Periodic Dispersion Maps
78(3)
Design Issues
81(4)
Perturbation of Solitons
85(4)
Perturbation Methods
85(1)
Amplifier Noise
86(2)
Timing Jitter
88(1)
Higher-Order Effects
89(15)
Third-Order Dispersion
89(2)
Self-Steepening
91(2)
Intrapulse Raman Scattering
93(3)
Propagation of Femtosecond Pulses
96(3)
References
99(5)
Dark Solitons
104(43)
Kerr Medium
104(4)
Inverse Scattering Transform
105(1)
Generation of Dark Solitons
106(2)
Non-Kerr Media
108(5)
Small-Amplitude Approximation
108(1)
Integrals of Motion
109(2)
Examples of Dark Solitons
111(2)
Instability-Induced Dynamics
113(9)
Stability Criterion
113(2)
Asymptotic Multiscale Analysis
115(3)
Two Examples
118(4)
Perturbation Theory
122(4)
Constant-Background Case
122(1)
Effect of Gain and Loss
123(2)
Stabilization of Dark Solitons
125(1)
Temporal Dark Solitons
126(6)
Raman-Induced Frequency Shift
127(1)
Dark-Soliton Jitter
128(2)
Third-Order Dispersion
130(2)
Experimental Results
132(15)
Temporal Dark Solitons
133(5)
Spatial Dark Solitons
138(4)
References
142(5)
Bragg Solitons
147(30)
Basic Concepts
147(2)
Photonic Bandgap
149(7)
Coupled-Mode Equations
149(2)
Continuous-Wave Solution in the Linear Case
151(2)
Grating-Induced Dispersion
153(1)
Grating as an Optical Filter
154(2)
Modulation Instability
156(6)
Nonlinear Dispersion Relations
156(2)
Linear Stability Analysis
158(2)
Effective NLS Equation
160(2)
Nonlinear Pulse Propagation
162(6)
Bragg Solitons
162(3)
Relation to NLS Solitons
165(1)
Formation of Bragg Solitons
166(2)
Nonlinear Switching
168(9)
Optical Bistability
168(2)
SPM-Induced Switching
170(1)
Effects of Birefringence
171(2)
References
173(4)
Two-Dimensional Solitons
177(35)
Soliton Transverse Instability
177(6)
Ray-Optics Approach
177(2)
Linear Stability Analysis
179(2)
Equations for Soliton Parameters
181(2)
Spatial Solitons in a Bulk Medium
183(8)
Structure and Stability of Solitons
184(3)
Nonparaxial Solitons
187(1)
Beam Collapse and Filamentation
188(3)
Experimental Results
191(4)
Soliton Interaction and Spiraling
195(7)
Two-Soliton Interaction
195(1)
Multisoliton Clusters
196(6)
Solitons with Angular Momentum
202(10)
Spinning Solitons
202(3)
Necklace Beams
205(2)
References
207(5)
Spatiotemporal Solitons
212(37)
Spatiotemporal Modulation Instability
212(3)
Optical Bullets and Their Stability
215(8)
Shape-Preserving Solutions
216(1)
Spatiotemporal Collapse
217(2)
Pulse Propagation in Planar Waveguides
219(2)
Pulse Propagation in Bulk Kerr Media
221(2)
Normal-Dispersion Regime
223(5)
Shape-Preserving Solutions
223(1)
Numerical Simulations
224(2)
Nonlinear X Waves
226(2)
Collapse-Arresting Mechanisms
228(5)
Saturable Nonlinearity
228(3)
Graded-Index Nonlinear Media
231(2)
Higher-Order Effects
233(9)
Generalized NLS Equation
233(2)
Space--Time Focusing
235(1)
Intrapulse Raman Scattering
236(3)
Multiphoton Absorption
239(1)
Direct Integration of Maxwell Equations
240(2)
Experimental Results
242(7)
Normal-Dispersion Regime
242(3)
Anomalous-Dispersion Regime
245(1)
References
246(3)
Vortex Solitons
249(29)
Introduction
249(2)
Transverse Instability
251(4)
Linear Stability Analysis
251(1)
Experimental Observations
252(3)
Properties of Vortex Solitons
255(11)
Stationary Solutions
255(2)
Vortex Rotation and Drift
257(4)
Experimental Results
261(5)
Aharonov--Bohm Effect
266(2)
Vortex Arrays and Lattices
268(3)
Ring Dark Solitons
271(7)
References
274(4)
Vector Solitons
278(62)
Incoherently Coupled Solitons
278(7)
Coupled Nonlinear Schrodinger Equations
279(2)
Soliton-Induced Waveguiding
281(2)
Exact Solutions
283(2)
Multicomponent Vector Solitons
285(4)
Multiple Coupled NLS Equations
285(2)
Bifurcation Diagram for Vector Solitons
287(2)
Stability of Vector Solitons
289(6)
General Stability Analysis
289(3)
Two Coupled Modes
292(2)
Effect of Walk-off
294(1)
Coherently Coupled Solitons
295(11)
Coherently Coupled NLS Equations
296(2)
Shape-Preserving Solutions
298(4)
Polarization Dynamics
302(2)
Experimental Results
304(2)
Multihump Vector Solitons
306(5)
Two-Dimensional Vector Solitons
311(15)
Radially Symmetric Vector Solitons
312(3)
Ring-Shaped Vector Solitons
315(1)
Multipole Vector Solitons
316(5)
Effect of Anisotropy and Nonlocality
321(3)
Experimental Results
324(2)
Transverse Modulation Instability
326(1)
Dark Vector Solitons
327(13)
Polarization-Domain Walls
328(2)
Vector Solitons Created by Optical Vortices
330(3)
References
333(7)
Parametric Solitons
340(46)
Parametric Interaction
340(3)
Waveguide Geometry
343(12)
One-Dimensional Quadratic Solitons
343(2)
Bright Quadratic Solitons
345(4)
Walking Quadratic Solitons
349(1)
Experimental Observations
350(2)
Soliton Collisions
352(1)
Quadratic Dark Solitons
353(2)
Three-Wave Quadratic Solitons
355(1)
Quadratic Solitons in Bulk Media
355(10)
Two-Dimensional Spatial Solitons
356(2)
Experimental Results
358(4)
Transverse Modulation Instability
362(1)
Soliton Scattering and Fusion
363(2)
Multifrequency Parametric Solitons
365(5)
Multistep Cascading
365(2)
Parametric Soliton-Induced Waveguides
367(3)
Quasi-Phase Matching
370(5)
Quasi-Phase-Matching Solitons
371(2)
Quasi-Periodic Parametric Solitons
373(2)
Related Concepts
375(11)
Competing Nonlinearities
375(1)
Parametric Vortex Solitons
376(2)
Parametric Optical Bullets
378(1)
Discrete Quadratic Solitons
379(1)
References
380(6)
Discrete Solitons
386(39)
Discrete NLS Equation
386(4)
Nonlinear Waveguide Arrays
387(1)
Discrete Diffraction
388(1)
Discrete Spatial Solitons
389(1)
General Theory
390(7)
Improved Analytical Model
391(2)
Dispersion Characteristics
393(1)
Analytical Approximations
394(3)
Modulation Instability
397(4)
Plane-Wave Dispersion Relation
398(1)
Staggered and Unstaggered Modes
398(3)
Bright and Dark Solitons
401(9)
Odd and Even Bright Solitons
402(2)
Twisted Modes
404(2)
Discrete Dark Solitons
406(4)
Experimental Results
410(7)
Self-Focusing Regime
410(3)
Diffraction Management
413(1)
Interaction of Discrete Solitons
414(2)
Bloch Oscillations
416(1)
Related Concepts
417(8)
Discrete-Soliton Networks
417(2)
Optically Induced Waveguide Arrays
419(2)
References
421(4)
Solitons in Photonic Crystals
425(22)
Linear Characteristics
425(4)
Photonic Bandgap
426(1)
Defect Modes
427(2)
Waveguides in Photonic Crystals
429(1)
Effective Discrete Models
429(4)
General Overview
429(1)
Green-Function Approach
430(3)
Bandgap Solitons
433(5)
Nonlinear Photonic Crystals
433(1)
Staggered and Unstaggered Modes
434(2)
Soliton Stability
436(2)
Two-Dimensional Photonic Crystals
438(4)
Future Perspectives
442(5)
References
444(3)
Incoherent Solitons
447(25)
Historical Perspective
447(2)
Theoretical Methods
449(6)
Coherent Density Theory
449(2)
Mutual Coherence Function
451(1)
Modal Theory
452(2)
Wigner Transform Method
454(1)
Bright Incoherent Solitons
455(8)
Properties of Partially Coherent Solitons
455(3)
Modulation Instability of Partially Coherent Beams
458(2)
Experimental Results
460(3)
Dark and Vortex Solitons
463(9)
Structure of Dark Incoherent Solitons
463(2)
Experimental Results
465(4)
References
469(3)
Related Concepts
472(55)
Self-Focusing and Solitons in Liquid Crystals
472(8)
Reorientation Nonlinearities
473(1)
Spatial Solitons in Liquid Crystals
474(4)
Nonlocal Solitons
478(2)
Self-Written Waveguides
480(7)
Photosensitive Materials
480(1)
Theoretical Models
481(3)
Experimental Results
484(3)
Dissipative and Cavity Solitons
487(15)
History and Basic Physics
489(1)
Kerr and Kerr-like Media
490(3)
Semiconductor Microresonators
493(6)
Parametric Cavity Solitons
499(3)
Magnetic Solitons
502(7)
Nonlinear Spin Waves
502(2)
Bright and Dark Magnetic Solitons
504(3)
Soliton and Bullet Collisions
507(2)
Bose--Einstein Condensates
509(18)
Gross--Pitaevskii Equation
510(1)
Nonlinear Modes in a Parabolic Trap
511(4)
Dark Solitons
515(2)
Vortices
517(2)
Bright Solitons
519(2)
References
521(6)
Index 527


Govind P. Agrawal received his B.Sc. degree from the University of Lucknow in 1969 with honours. He was awarded a gold medal for achieving the top position in the university. Govind joined the Indian Institute of Technology at New Delhi in 1969 and received the M.Sc. and Ph.D. degrees in 1971 and 1974, respectively. After holding positions at the Ecole Polytechnique (France), the City University of New York, and the Laser company, Quantel, Orsay, France, Dr. Agrawal joined in 1981 the technical staff of the world-famous AT&T Bell Laboratories, Murray Hill, N.J., USA, where he worked on problems related to the development of semiconductor lasers and fiber-optic communication systems. He joined in 1989 the faculty of the Institute of Optics at the University of Rochester where he is a Professor of Optics. His research interests focus on quantum electronics, nonlinear optics, and optical communications. In particular, he has contributed significantly to the fields of semiconductor lasers, nonlinear fiber optics, and optical communications. He is an author or co-author of more than 250 research papers, several book chapters and review articles, and four books. He has also edited the books "Contemporary Nonlinear Optics" (Academic Press, 1992) and "Semiconductor Lasers: Past, Present and Future" (AIP Press, 1995). The books authored by Dr. Agrawal have influenced an entire generation of scientists. Several of them have been translated into Chinese, Japanese, Greek, and Russian.