Muutke küpsiste eelistusi

E-raamat: Optimal Control Applied to Biological Models

(University of Tennessee, Knoxville, Tennessee, USA), (Cornell University, Ithaca, NY, USA)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 156,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

From economics and business to the biological sciences to physics and engineering, professionals successfully use the powerful mathematical tool of optimal control to make management and strategy decisions. Optimal Control Applied to Biological Models thoroughly develops the mathematical aspects of optimal control theory and provides insight into the application of this theory to biological models.

Focusing on mathematical concepts, the book first examines the most basic problem for continuous time ordinary differential equations (ODEs) before discussing more complicated problems, such as variations of the initial conditions, imposed bounds on the control, multiple states and controls, linear dependence on the control, and free terminal time. In addition, the authors introduce the optimal control of discrete systems and of partial differential equations (PDEs).

Featuring a user-friendly interface, the book contains fourteen interactive sections of various applications, including immunology and epidemic disease models, management decisions in harvesting, and resource allocation models. It also develops the underlying numerical methods of the applications and includes the MATLAB® codes on which the applications are based.

Requiring only basic knowledge of multivariable calculus, simple ODEs, and mathematical models, this text shows how to adjust controls in biological systems in order to achieve proper outcomes.

Arvustused

". . . the present book has the merit of collecting and treating in a unitary and accessible manner a large number of relevant problems in mathematical biology; the text is well written, systematically presented, accurate most of the time and accessible to a fairly large audience; it could do a great service to the community of researchers in mathematical control theory . . ."

Stefan Miric, in Mathematical Reviews, 2008f

Preface xi
1 Basic Optimal Control Problems
1
1.1 Preliminaries
4
1.2 The Basic Problem and Necessary Conditions
7
1.3 Pontryagin's Maximum Principle
12
1.4 Exercises
18
2 Existence and Other Solution Properties
21
2.1 Existence and Uniqueness Results
23
2.2 Interpretation of the Adjoint
26
2.3 Principle of Optimality
28
2.4 The Hamiltonian and Autonomous Problems
31
2.5 Exercises
35
3 State Conditions at the Final Time
37
3.1 Payoff Terms
37
3.2 States with Fixed Endpoints
41
3.3 Exercises
46
4 Forward-Backward Sweep Method
49
5 Lab 1: Introductory Example
57
6 Lab 2: Mold and Fungicide
63
7 Lab 3: Bacteria
67
8 Bounded Controls
71
8.1 Necessary Conditions
73
8.2 Numerical Solutions
81
8.3 Exercises
83
9 Lab 4: Bounded Case
85
10 Lab 5: Cancer 89
11 Lab 6: Fish Harvesting 93
12 Optimal Control of Several Variables 97
12.1 Necessary Conditions
97
12.2 Linear Quadratic Regulator Problems
104
12.3 Higher Order Differential Equations
107
12.4 Isoperimetric Constraints
108
12.5 Numerical Solutions
112
12.6 Exercises
113
13 Lab 7: Epidemic Model 117
14 Lab 8: HIV Treatment 123
15 Lab 9: Bear Populations 129
16 Lab 10: Glucose Model 135
17 Linear Dependence on the Control 139
17.1 Bang-Bang Controls
139
17.2 Singular Controls
143
17.3 Exercises
151
18 Lab 11: Timber Harvesting 153
19 Lab 12: Bioreactor 157
20 Free Terminal Time Problems 163
20.1 Necessary Conditions
163
20.2 Time Optimal Control
168
20.3 Exercises
173
21 Adapted Forward-Backward Sweep 175
21.1 Secant Method
175
21.2 One State with Fixed Endpoints
177
21.3 Nonlinear Payoff Terms
182
21.4 Free Terminal Time
183
21.5 Multiple Shots
184
21.6 Exercises
187
22 Lab 13: Predator-Prey Model 189
23 Discrete Time Models 193
23.1 Necessary Conditions
193
23.2 Systems Case
199
23.3 Exercises
202
24 Lab 14: Invasive Plant Species 205
25 Partial Differential Equation Models 211
25.1 Existence of an Optimal Control
212
25.2 Sensitivities and Necessary Conditions
213
25.3 Uniqueness of the Optimal Control
215
25.4 Numerical Solutions
215
25.5 Harvesting Example
216
25.6 Beaver Example
220
25.7 Predator-Prey Example
223
25.8 Identification Example
228
25.9 Controlling Boundary Terms
231
25.10 Exercises
234
26 Other Approaches and Extensions 237
References 245
Index 259


Suzanne Lenhart, John T. Workman