Preface |
|
xiii | |
|
1 Least Squares Approximation |
|
|
1 | (62) |
|
1.1 A Curve Fitting Example |
|
|
2 | (5) |
|
1.2 Linear Batch Estimation |
|
|
7 | (12) |
|
1.2.1 Linear Least Squares |
|
|
9 | (5) |
|
1.2.2 Weighted Least Squares |
|
|
14 | (2) |
|
1.2.3 Constrained Least Squares |
|
|
16 | (3) |
|
1.3 Linear Sequential Estimation |
|
|
19 | (6) |
|
1.4 Nonlinear Least Squares Estimation |
|
|
25 | (10) |
|
|
35 | (5) |
|
|
40 | (12) |
|
1.6.1 Matrix Decompositions in Least Squares |
|
|
40 | (3) |
|
1.6.2 Kronecker Factorization and Least Squares |
|
|
43 | (5) |
|
1.6.3 Levenberg-Marquardt Method |
|
|
48 | (2) |
|
1.6.4 Projections in Least Squares |
|
|
50 | (2) |
|
|
52 | (11) |
|
2 Probability Concepts in Least Squares |
|
|
63 | (72) |
|
2.1 Minimum Variance Estimation |
|
|
63 | (11) |
|
2.1.1 Estimation without a priori State Estimates |
|
|
64 | (4) |
|
2.1.2 Estimation with a priori State Estimates |
|
|
68 | (6) |
|
|
74 | (2) |
|
2.3 Cramer-Rao Inequality |
|
|
76 | (6) |
|
2.4 Constrained Least Squares Covariance |
|
|
82 | (2) |
|
2.5 Maximum Likelihood Estimation |
|
|
84 | (4) |
|
2.6 Properties of Maximum Likelihood Estimation |
|
|
88 | (3) |
|
2.6.1 Invariance Principle |
|
|
88 | (1) |
|
2.6.2 Consistent Estimator |
|
|
88 | (2) |
|
2.6.3 Asymptotically Gaussian Property |
|
|
90 | (1) |
|
2.6.4 Asymptotically Efficient Property |
|
|
90 | (1) |
|
|
91 | (7) |
|
|
91 | (4) |
|
2.7.2 Minimum Risk Estimation |
|
|
95 | (3) |
|
|
98 | (21) |
|
2.8.1 Nonuniqueness of the Weight Matrix |
|
|
98 | (3) |
|
2.8.2 Analysis of Covariance Errors |
|
|
101 | (2) |
|
|
103 | (5) |
|
2.8.4 Total Least Squares |
|
|
108 | (11) |
|
|
119 | (16) |
|
3 Sequential State Estimation |
|
|
135 | (84) |
|
3.1 A Simple First-Order Filter Example |
|
|
136 | (2) |
|
3.2 Full-Order Estimators |
|
|
138 | (5) |
|
3.2.1 Discrete-Time Estimators |
|
|
142 | (1) |
|
3.3 The Discrete-Time Kalman Filter |
|
|
143 | (25) |
|
3.3.1 Kalman Filter Derivation |
|
|
144 | (5) |
|
3.3.2 Stability and Joseph's Form |
|
|
149 | (2) |
|
3.3.3 Information Filter and Sequential Processing |
|
|
151 | (2) |
|
3.3.4 Steady-State Kalman Filter |
|
|
153 | (3) |
|
3.3.5 Relationship to Least Squares Estimation |
|
|
156 | (2) |
|
3.3.6 Correlated Measurement and Process Noise |
|
|
158 | (1) |
|
3.3.7 Cramer-Rao Lower Bound |
|
|
159 | (5) |
|
3.3.8 Orthogonality Principle |
|
|
164 | (4) |
|
3.4 The Continuous-Time Kalman Filter |
|
|
168 | (14) |
|
3.4.1 Kalman Filter Derivation in Continuous Time |
|
|
168 | (3) |
|
3.4.2 Kalman Filter Derivation from Discrete Time |
|
|
171 | (4) |
|
|
175 | (1) |
|
3.4.4 Steady-State Kalman Filter |
|
|
176 | (6) |
|
3.4.5 Correlated Measurement and Process Noise |
|
|
182 | (1) |
|
3.5 The Continuous-Discrete Kalman Filter |
|
|
182 | (2) |
|
3.6 Extended Kalman Filter |
|
|
184 | (8) |
|
|
192 | (7) |
|
3.8 Constrained Filtering |
|
|
199 | (3) |
|
|
202 | (17) |
|
4 Advanced Topics in Sequential State Estimation |
|
|
219 | (106) |
|
4.1 Factorization Methods |
|
|
219 | (4) |
|
4.2 Colored-Noise Kalman Filtering |
|
|
223 | (5) |
|
4.3 Consistency of the Kalman Filter |
|
|
228 | (3) |
|
4.4 Consider Kalman Filtering |
|
|
231 | (7) |
|
4.4.1 Consider Update Equations |
|
|
232 | (2) |
|
4.4.2 Consider Propagation Equations |
|
|
234 | (4) |
|
4.5 Decentralized Filtering |
|
|
238 | (6) |
|
4.5.1 Covariance Intersection |
|
|
240 | (4) |
|
|
244 | (13) |
|
4.6.1 Batch Processing for Filter Tuning |
|
|
244 | (5) |
|
4.6.2 Multiple-Modeling Adaptive Estimation |
|
|
249 | (3) |
|
4.6.3 Interacting Multiple-Model Estimation |
|
|
252 | (5) |
|
4.7 Ensemble Kalman Filtering |
|
|
257 | (3) |
|
4.8 Nonlinear Stochastic Filtering Theory |
|
|
260 | (10) |
|
4.8.1 Ito Stochastic Differential Equations |
|
|
263 | (2) |
|
|
265 | (2) |
|
4.8.3 Fokker-Planck Equation |
|
|
267 | (2) |
|
|
269 | (1) |
|
4.9 Gaussian Sum Filtering |
|
|
270 | (3) |
|
|
273 | (23) |
|
4.10.1 Optimal Importance Density |
|
|
277 | (2) |
|
|
279 | (8) |
|
4.10.3 Rao-Blackwellized Particle Filter |
|
|
287 | (4) |
|
4.10.4 Navigation Using a Rao-Blackwellized Particle Filter |
|
|
291 | (5) |
|
|
296 | (2) |
|
|
298 | (4) |
|
|
302 | (23) |
|
|
325 | (66) |
|
5.1 Fixed-Interval Smoothing |
|
|
326 | (27) |
|
5.1.1 Discrete-Time Formulation |
|
|
327 | (12) |
|
5.1.2 Continuous-Time Formulation |
|
|
339 | (10) |
|
5.1.3 Nonlinear Smoothing |
|
|
349 | (4) |
|
5.2 Fixed-Point Smoothing |
|
|
353 | (7) |
|
5.2.1 Discrete-Time Formulation |
|
|
353 | (4) |
|
5.2.2 Continuous-Time Formulation |
|
|
357 | (3) |
|
|
360 | (7) |
|
5.3.1 Discrete-Time Formulation |
|
|
360 | (3) |
|
5.3.2 Continuous-Time Formulation |
|
|
363 | (4) |
|
|
367 | (15) |
|
5.4.1 Estimation/Control Duality |
|
|
367 | (8) |
|
5.4.2 Innovations Process |
|
|
375 | (7) |
|
|
382 | (9) |
|
6 Parameter Estimation: Applications |
|
|
391 | (60) |
|
6.1 Attitude Determination |
|
|
391 | (12) |
|
6.1.1 Vector Measurement Models |
|
|
392 | (3) |
|
6.1.2 Maximum Likelihood Estimation |
|
|
395 | (1) |
|
6.1.3 Optimal Quaternion Solution |
|
|
396 | (4) |
|
6.1.4 Information Matrix Analysis |
|
|
400 | (3) |
|
6.2 Global Positioning System Navigation |
|
|
403 | (4) |
|
6.3 Simultaneous Localization and Mapping |
|
|
407 | (4) |
|
6.3.1 3D Point Cloud Registration Using Linear Least Squares |
|
|
408 | (3) |
|
|
411 | (8) |
|
6.5 Aircraft Parameter Identification |
|
|
419 | (6) |
|
6.6 Eigensystem Realization Algorithm |
|
|
425 | (7) |
|
|
432 | (19) |
|
7 Estimation of Dynamic Systems: Applications |
|
|
451 | (62) |
|
|
451 | (15) |
|
7.1.1 Multiplicative Quaternion Formulation |
|
|
452 | (5) |
|
7.1.2 Discrete-Time Attitude Estimation |
|
|
457 | (3) |
|
|
460 | (3) |
|
7.1.4 Farrenkopf's Steady-State Analysis |
|
|
463 | (3) |
|
7.2 Inertial Navigation with GPS |
|
|
466 | (10) |
|
7.2.1 Extended Kalman Filter Application to GPS/INS |
|
|
467 | (9) |
|
|
476 | (3) |
|
7.4 Target Tracking of Aircraft |
|
|
479 | (16) |
|
|
479 | (7) |
|
|
486 | (4) |
|
7.4.3 Aircraft Parameter Estimation |
|
|
490 | (5) |
|
7.5 Smoothing with the Eigensystem Realization Algorithm |
|
|
495 | (4) |
|
|
499 | (14) |
|
8 Optimal Control and Estimation Theory |
|
|
513 | (62) |
|
8.1 Calculus of Variations |
|
|
514 | (5) |
|
8.2 Optimization with Differential Equation Constraints |
|
|
519 | (2) |
|
8.3 Pontryagin's Optimal Control Necessary Conditions |
|
|
521 | (7) |
|
8.4 Discrete-Time Control |
|
|
528 | (1) |
|
8.5 Linear Regulator Problems |
|
|
529 | (11) |
|
8.5.1 Continuous-Time Formulation |
|
|
530 | (6) |
|
8.5.2 Discrete-Time Formulation |
|
|
536 | (4) |
|
8.6 Linear Quadratic-Gaussian Controllers |
|
|
540 | (8) |
|
8.6.1 Continuous-Time Formulation |
|
|
541 | (4) |
|
8.6.2 Discrete-Time Formulation |
|
|
545 | (3) |
|
8.7 Loop Transfer Recovery |
|
|
548 | (5) |
|
8.8 Spacecraft Control Design |
|
|
553 | (5) |
|
|
558 | (17) |
|
A Review of Dynamic Systems |
|
|
575 | (86) |
|
|
575 | (13) |
|
A.1.1 The State-Space Approach |
|
|
576 | (3) |
|
A.1.2 Homogeneous Linear Dynamic Systems |
|
|
579 | (4) |
|
A.1.3 Forced Linear Dynamic Systems |
|
|
583 | (2) |
|
A.1.4 Linear State Variable Transformations |
|
|
585 | (3) |
|
A.2 Nonlinear Dynamic Systems |
|
|
588 | (3) |
|
A.3 Parametric Differentiation |
|
|
591 | (2) |
|
A.4 Observability and Controllability |
|
|
593 | (4) |
|
A.5 Discrete-Time Systems |
|
|
597 | (5) |
|
A.6 Stability of Linear and Nonlinear Systems |
|
|
602 | (6) |
|
A.7 Attitude Kinematics and Rigid Body Dynamics |
|
|
608 | (9) |
|
A.7.1 Attitude Kinematics |
|
|
608 | (6) |
|
A.7.2 Rigid Body Dynamics |
|
|
614 | (3) |
|
A.8 Spacecraft Dynamics and Orbital Mechanics |
|
|
617 | (7) |
|
A.8.1 Spacecraft Dynamics |
|
|
617 | (2) |
|
|
619 | (5) |
|
A.9 Inertial Navigation Systems |
|
|
624 | (11) |
|
A.9.1 Coordinate Definitions and Earth Model |
|
|
624 | (4) |
|
|
628 | (2) |
|
A.9.3 Simulation of Sensors |
|
|
630 | (3) |
|
|
633 | (2) |
|
A.10 Aircraft Flight Dynamics |
|
|
635 | (3) |
|
|
638 | (6) |
|
|
644 | (17) |
|
|
661 | (20) |
|
B.1 Basic Definitions of Matrices |
|
|
661 | (5) |
|
|
666 | (4) |
|
B.3 Matrix Norms and Definiteness |
|
|
670 | (2) |
|
B.4 Matrix Decompositions |
|
|
672 | (5) |
|
|
677 | (4) |
|
C Basic Probability Concepts |
|
|
681 | (28) |
|
C.1 Functions of a Single Discrete-Valued Random Variable |
|
|
681 | (4) |
|
C.2 Functions of Discrete-Valued Random Variables |
|
|
685 | (2) |
|
C.3 Functions of Continuous Random Variables |
|
|
687 | (2) |
|
|
689 | (1) |
|
C.5 Gaussian Random Variables |
|
|
690 | (4) |
|
C.5.1 Joint and Conditional Gaussian Case |
|
|
691 | (1) |
|
C.5.2 Probability Inside a Quadratic Hypersurface |
|
|
692 | (2) |
|
C.6 Chi-Square Random Variables |
|
|
694 | (1) |
|
|
695 | (5) |
|
C.8 Propagation of Functions through Various Models |
|
|
700 | (3) |
|
C.8.1 Linear Matrix Models |
|
|
700 | (1) |
|
|
701 | (2) |
|
C.9 Scalar and Matrix Expectations |
|
|
703 | (1) |
|
C.10 Random Sampling from a Covariance Matrix |
|
|
704 | (5) |
|
D Parameter Optimization Methods |
|
|
709 | (16) |
|
D.1 Unconstrained Extrema |
|
|
709 | (2) |
|
D.2 Equality Constrained Extrema |
|
|
711 | (5) |
|
D.3 Nonlinear Unconstrained Optimization |
|
|
716 | (9) |
|
D.3.1 Some Geometrical Insights |
|
|
717 | (1) |
|
D.3.2 Methods of Gradients |
|
|
718 | (2) |
|
D.3.3 Second-Order (Gauss-Newton) Algorithm |
|
|
720 | (5) |
|
|
725 | (2) |
Index |
|
727 | |