Muutke küpsiste eelistusi

E-raamat: Optimal Measurement Methods for Distributed Parameter System Identification

  • Formaat: 392 pages
  • Ilmumisaeg: 27-Aug-2004
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781135488123
  • Formaat - EPUB+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 392 pages
  • Ilmumisaeg: 27-Aug-2004
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781135488123

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Unique in its focus, this book outlines optimal sensor placement strategies for parameter identification in dynamic distributed systems modeled by partial differential equations. The author focuses on practical applications, particularly in environmental processes, as well as on the development of new techniques and algorithms, and methods that have been successful in the related fields of optimum experimental design.
Optimal Measurement Methods for Distributed Parameter System Identification places emphasis on determining the best way of guiding moving and scanning sensors, and of making the solutions independent of the parameters being identified. The text includes extensive numerical results that show the efficiency of the proposed algorithms. Case studies involving the design of air quality-monitoring networks and network design for groundwater pollution problems are also presented to show the strength of the proposed approach in studying practical problems.



For dynamic distributed systems modeled by partial differential equations, existing methods of sensor location in parameter estimation experiments are either limited to one-dimensional spatial domains or require large investments in software systems. With the expense of scanning and moving sensors, optimal placement presents a critical problem.

Optimal Measurement Methods for Distributed Parameter System Identification discusses the characteristic features of the sensor placement problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, culminating in the most comprehensive and timely treatment of the issue available. By presenting a step-by-step guide to theoretical aspects and to practical design methods, this book provides a sound understanding of sensor location techniques.

Both researchers and practitioners will find the case studies, the proposed algorithms, and the numerical examples to be invaluable. This text also offers results that translate easily to MATLAB and to Maple. Assuming only a basic familiarity with partial differential equations, vector spaces, and probability and statistics, and avoiding too many technicalities, this is a superb resource for researchers and practitioners in the fields of applied mathematics, electrical, civil, geotechnical, mechanical, chemical, and environmental engineering.
Preface, 1 Introduction, 2 Key ideas of identification and experimental design, 3 Locally optimal designs for stationary sensors, 4 Locally optimal strategies for scanning and moving observations, 5 Measurement strategies with alternative design objectives, 6 Robust designs for sensor location, 7 Towards even more challenging problems, 8 Applications from engineering, Appendices, References, Index
Ucinski, Dariusz