Muutke küpsiste eelistusi

E-raamat: Optimal Transport: Theory and Applications

Edited by (Université de Paris XI), Edited by (Université de Grenoble), Edited by (Université de Paris VI (Pierre et Marie Curie))
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 62,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A collection of introductory lecture notes and research papers on optimal transportation and its interactions with analysis, geometry, PDE and probability. Both fundamental and advanced aspects of the theory are covered, as well as applications to urban planning and economics. A valuable resource for graduate students and researchers.

The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.

Muu info

Lecture notes and research papers on optimal transportation, its applications, and interactions with other areas of mathematics.
List of contributors
vii
Preface ix
PART 1 SHORT COURSES
1 Introduction to optimal transport theory
3(19)
Filippo Santambrogio
2 Models and applications of optimal transport in economics, traffic, and urban planning
22(19)
Filippo Santambrogio
3 Logarithmic Sobolev inequality for diffusion semigroups
41(17)
Ivan Gentil
4 Lecture notes on variational models for incompressible Euler equations
58(14)
Luigi Ambrosio
Alessio Figalli
5 Ricci flow: the foundations via optimal transportation
72(28)
Peter Topping
6 Lecture notes on gradient flows and optimal transport
100(45)
Sara Daneri
Giuseppe Savare
7 Ricci curvature, entropy, and optimal transport
145(58)
Shin-ichi Ohta
PART 2 SURVEYS AND RESEARCH PAPERS
8 Computing a mass transport problem with a least-squares method
203(13)
Olivier Besson
Martine Picq
Jerome Poussin
9 On the duality theory for the Monge--Kantorovich transport problem
216(50)
Mathias Beiglbock
Christian Leonard
Walter Schachermayer
10 Optimal coupling for mean field limits
266(8)
Francois Bolley
11 Functional inequalities via Lyapunov conditions
274(14)
Patrick Cattiaux
Arnaud Guillin
12 Size of the medial axis and stability of Federer's curvature measures
288
Quentin Merigot
Hervé Pajot has been a full professor at the Fourier Institute (University of Grenoble) since 2003. He is the author of Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral, considered a standard reference in the subject. He is currently chief editor of the Annales de l'Institut Fourier. Yann Ollivier is a research scientist at the CNRS, Paris-Sud (Saclay) University, France. His research focusses on various areas of pure and applied mathematics, always featuring a strong interaction between geometric and probabilistic aspects, such as the geometry of random groups, the curvature of Markov chains on metric spaces, statistical viewpoints on general relativity, or the mathematics of artificial intelligence. He is the recipient of several prizes, including the Bronze Medal of the CNRS. Cedric Villani is the director of the Institut Henri Poincaré, Paris, and a professor at the University of Lyon. He is the author of two books on optimal transport, and was awarded the Fields medal at the 2010 International Congress of Mathematicians in Hyderabad. He often serves as a spokesman for the French mathematical community.