Muutke küpsiste eelistusi

E-raamat: Optimal Transportation Networks: Models and Theory

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1955
  • Ilmumisaeg: 23-Oct-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540693154
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1955
  • Ilmumisaeg: 23-Oct-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540693154

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems, and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties, empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

Arvustused

From the reviews:

The book aims to give a unified mathematical theory of branched transportation (or irrigation) networks. The logical structure of the book makes it easy to learn the theory. this book, in addition to being a great source of references is also extremely suitable for a study from scratch. The theory is presented while avoiding useless complications and keeping the language simple. I would also suggest this book to graduate students who want to enter this very interesting research field. (Luigi De Pascale, Mathematical Reviews, Issue 2010 e)

Introduction: The Models
1(10)
The Mathematical Models
11(14)
The Monge-Kantorovich Problem
11(1)
The Gilbert-Steiner Problem
12(1)
Three Continuous Extensions of the Gilbert-Steiner Problem
13(3)
Xia's Transport Paths
13(1)
Maddalena-Solimini's Patterns
14(1)
Traffic Plans
14(2)
Questions and Answers
16(3)
Plan
17(2)
Related Problems and Models
19(6)
Measures on Sets of Paths
19(1)
Urban Transportation Models with more than One Transportation Means
20(5)
Traffic Plans
25(14)
Parameterized Traffic Plans
27(2)
Stability Properties of Traffic Plans
29(5)
Lower Semicontinuity of Length, Stopping Time, Averaged Length and Averaged Stopping Time
30(1)
Multiplicity of a Traffic Plan and its Upper Semicontinuity
31(2)
Sequential Compactness of Traffic Plans
33(1)
Application to the Monge-Kantorovich Problem
34(1)
Energy of a Traffic Plan and Existence of a Minimizer
35(4)
The Structure of Optimal Traffic Plans
39(8)
Speed Normalization
39(2)
Loop-Free Traffic Plans
41(1)
The Generalized Gilbert Energy
42(2)
Rectifiability of Traffic Plans with Finite Energy
44(1)
Appendix: Measurability Lemmas
44(3)
Operations on Traffic Plans
47(8)
Elementary Operations
47(1)
Restriction, Domain of a Traffic Plan
47(1)
Sum of Traffic Plans (or Union of their Parameterizations)
48(1)
Mass Normalization
48(1)
Concatenation
48(3)
Concatenation of Two Traffic Plans
48(1)
Hierarchical Concatenation (Construction of Infinite Irrigating Trees or Patterns)
49(2)
A Priori Properties on Minimizers
51(4)
An Assumption on μ+, μ- and π Avoiding Fibers with Zero Length
51(2)
A Convex Hull Property
53(2)
Traffic Plans and Distances between Measures
55(10)
All Measures can be Irrigated for α > 1 --- 1/N
56(2)
Stability with Respect to μ+ and μ-
58(1)
Comparison of Distances between Measures
59(6)
The Tree Structure of Optimal Traffic Plans and their Approximation
65(14)
The Single Path Property
65(5)
The Tree Property
70(1)
Decomposition into Trees and Finite Graphs Approximation
71(6)
Bi-Lipschitz Regularity
77(2)
Interior and Boundary Regularity
79(16)
Connected Components of a Traffic Plan
79(2)
Cuts and Branching Points of a Traffic Plan
81(1)
Interior Regularity
82(9)
The Main Lemma
82(3)
Interior Regularity when supp(μ+) ∩ supp(μ-) = 0
85(4)
Interior Regularity when μ+ is a Finite Atomic Measure
89(2)
Boundary Regularity
91(4)
Further Regularity Properties
93(2)
The Equivalence of Various Models
95(10)
Irrigating Finite Atomic Measures (Gilbert-Steiner) and Traffic Plans
95(1)
Patterns (Maddalena et al.) and Traffic Plans
96(1)
Transport Paths (Qinglan Xia) and Traffic Plans
97(3)
Optimal Transportation Networks as Flat Chains
100(5)
Irrigability and Dimension
105(14)
Several Concepts of Dimension of a Measure and Irrigability Results
105(6)
Lower Bound on d(μ)
111(1)
Upper Bound on d(μ)
112(2)
Remarks and Examples
114(5)
The Landscape of an Optimal Pattern
119(16)
Introduction
119(3)
Landscape Equilibrium and OCNs in Geophysics
119(3)
A General Development Formula
122(2)
Existence of the Landscape Function and Applications
124(4)
Well-Definedness of the Landscape Function
124(3)
Variational Applications
127(1)
Properties of the Landscape Function
128(3)
Semicontinuity
128(1)
Maximal Slope in the Network Direction
129(2)
Holder Continuity under Extra Assumptions
131(4)
Campanato Spaces by Medians
131(1)
Holder Continuity of the Landscape Function
132(3)
The Gilbert-Steiner Problem
135(16)
Optimum Irrigation from One Source to Two Sinks
135(8)
Optimal Shape of a Traffic Plan with given Dyadic Topology
143(2)
Topology of a Graph
143(1)
A Recursive Construction of an Optimum with Full Steiner Topology
144(1)
Number of Branches at a Bifurcation
145(6)
Dirac to Lebesgue Segment: A Case Study
151(18)
Analytical Results
152(1)
The Case of a Source Aligned with the Segment
152(1)
A ``T Structure'' is not Optimal
153(2)
The Boundary Behavior of an Optimal Solution
155(4)
Can Fibers Move along the Segment in the Optimal Structure?
159(1)
Numerical Results
159(1)
Coding of the Topology
159(1)
Exhaustive Search
160(1)
Heuristics for Topology Optimization
160(9)
Multiscale Method
161(3)
Optimality of Subtrees
164(1)
Perturbation of the Topology
165(4)
Application: Embedded Irrigation Networks
169(10)
Irrigation Networks made of Tubes
169(3)
Anticipating some Conclusions
171(1)
Getting Back to the Gilbert Functional
172(3)
A Consequence of the Space-filling Condition
175(1)
Source to Volume Transfer Energy
176(1)
Final Remarks
177(2)
Open Problems
179(6)
Stability
179(1)
Regularity
179(1)
The who goes where Problem
180(1)
Dirac to Lebesgue Segment
180(1)
Algorithm or Construction of Local Optima
181(1)
Structure
182(1)
Scaling Laws
183(1)
Local Optimality in the Case of Non Irrigability
183(2)
Skorokhod Theorem
185(4)
Flows in Tubes
189(2)
Poiseuille's Law
189(1)
Optimality of the Circular Section
190(1)
Notations
191(2)
References 193(6)
Index 199