Muutke küpsiste eelistusi

E-raamat: Optimization Aided Design: Reinforced Concrete

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 25-Jan-2022
  • Kirjastus: Wilhelm Ernst & Sohn Verlag fur Architektur und technische Wissenschaften
  • Keel: eng
  • ISBN-13: 9783433610701
  • Formaat - EPUB+DRM
  • Hind: 74,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 25-Jan-2022
  • Kirjastus: Wilhelm Ernst & Sohn Verlag fur Architektur und technische Wissenschaften
  • Keel: eng
  • ISBN-13: 9783433610701

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Concrete is the most used building material. Its main component, cement, however, accounts production- related for up to 10 % of global CO2 emissions and is therefore a major contributor to human-induced climate change. Due to its low tensile strength, concrete must be further enhanced in tension with adequate reinforcement, such as steel. Producing the latter therefore additionally impacts the environment. Consequently, reducing the material amount for design and construction of structures, thus lowering material- and transport-induced emissions, represents a key element to climate protection. In this context, meeting the essential requirements ? sustainability, serviceability, durability ? is yet indispensable.
The book presents innovative optimization aided design methods for concrete structures. Mathematical optimization is applied to practical problems of structural concrete at each level: from external, through internal structure identification to cross-section design. It is shown how to design resource-efficient structures following the flux of forces, how to optimally adapt reinforcement layouts to the internal force flow, and how to efficiently cope with demanding cross-sectional design tasks such as biaxial bending.
The optimization aided design methods are discussed in detail and described vividly. They are independent of standards, concrete material (normal to ultra-high performance) and reinforcement type (steel fibers to carbon bars), thus universally applicable. The book illustrates the different approaches with numerous figures and calculation examples. Existing applications in structural engineering are presented to demonstrate the potential of optimization aided design concepts, including ultra-lightweight hybrid beams, thin concrete solar collectors, and improved reinforcement layouts for tunnel lining segments.


Optimierungsgestütztes Entwerfen und Bemessen liefert neuartige Methoden, bewehrten Beton besonders effizient einzusetzen. Dabei wird die mathematische Optimierung auf die praktischen Probleme des Betonbaus angewendet. Ziel ist es, sparsam mit dem weltweit meistverwandten Baustoff Stahlbeton umzugehen und damit den CO2-Aussto� aus der Zement- und Stahlherstellung und den Ressourcenverbrauch an Kies, Sand und Wasser substanziell zu reduzieren.
Drei Themenbereiche sind angesprochen. Erstens, die Strukturfindung, also die Frage nach der richtigen äuà eren Form, dass schlanke, nach dem Kraftfluss ausgerichtete Tragwerke entstehen. Baustoffgerecht sind sie weitgehend auf Druck beansprucht. Zweitens, die Bewehrungsführung, die sich am inneren Kraftfluss orientiert. Vorteile ergeben sich gerade für Scheiben, volumenartige Bauteile, an Lasteinleitungsbereichen und Aussparungen. Es entstehen anschauliche, direkt in Bewehrungen umsetzbare Fachwerkmodelle. Dritter Entwicklungsschritt ist die Behandlung von Querschnitten. Sie werden in ihrer Form optimiert und in ihrer Bewehrung bemessen. Dies gilt auch für anspruchsvolle Beanspruchungen (zweiachsige Biegung) und nahezu beliebige Formen. Eine Parametrisierung ermöglicht die allgemeingültige à bertragung auf ganze Klassen von Querschnitten.
Die optimierungsgestützten Methoden werden vertieft und anschaulich beschrieben. Sie sind universell anwendbar und unabhängig von Normen, Betonarten und Bewehrungen. Sie gelten für normalfeste bis zu ultrahochfesten Betonen, für Bewehrungen aus Stahl, Carbon oder Glasfasern und für Bewehrungsstäbe als auch -fasern. Zahlreiche Abbildungen und Berechnungsbeispiele verdeutlichen die Anwendung. Zudem werden praktische Umsetzungen vorgestellt, darunter ultra-leichte Stahl-Beton-Balken, schlanke Solarkollektoren aus Beton und verbesserte Bewehrungslayouts für Tunnelschalen. Das Buch richtet sich gleichermaà en an Studierende, Forscher und Praktiker.

Arvustused

There is hardly a topic among building professionals that is discussed more intensively than sustainable construction. (?) In view of the continuing increase in the world's population, we will not build less, but more. Contrary to this, we need to radically limit resource consumption and CO2 emissions. It is obvious that in the future, building will have to be completely different, not just marginally, but fundamentally. (?) The methods, procedures and calculations described in this book represent an important step towards a kind of building that has little to do with the way we know it today. And this is a good thing. (Prof. Dr.-Ing. Dr.-Ing. E. h. Manfred Curbach in his foreword.)

The introduction of state-of-the-art optimization methods [ to concrete design] and the resulting minimum-material component shapes, which also have a minimized need for reinforcing steel (?), promote construction with concrete that is characterized by considerable material savings and thus considerable emission savings for the same utility value and durability. Supported by clearly understandable descriptions and a large number of examples, readers will find their way around quickly and easily. This makes it much easier to understand the subject matter, which is not always simple. This book provides a significant contribution to establishing a new foundation for building with concrete, this wonderful building material for everyone and for almost everything. (Prof. em. Dr. Dr. E. h. Dr. h. c. Werner Sobek in his foreword.)

Foreword v
Manfred Curbach
Foreword ix
Werner Sobek
Preface xiii
List of Examples
xix
Acronyms xxi
About the Authors xxiii
Acknowledgments xxv
1 Introduction
1(18)
1.1 Preliminaries
1(1)
1.2 Outer and Inner Shaping
2(4)
1.3 Environmental Demands
6(5)
1.4 Optimization Aided Design (OAD)
11(3)
1.5 Structure of the Book
14(5)
References
15(4)
2 Fundamentals of Reinforced Concrete (RC) Design
19(18)
2.1 Basic Principles
19(2)
2.2 Verification Concept
21(1)
2.3 Safety Concept
22(1)
2.4 Materials
23(5)
2.4.1 Plain Concrete
23(1)
2.4.2 Fiber-Reinforced Concrete (FRC)
24(2)
2.4.3 Ultra-High Performance Concrete (UHPC)
26(1)
2.4.4 Reinforcement
27(1)
2.5 Load-Bearing Behavior
28(9)
2.5.1 Bending Design
28(1)
2.5.1.1 Fundamentals
28(1)
2.5.1.2 Equilibrium for Composite Sections
29(3)
2.5.2 Strut-and-Tie Models (STMs)
32(3)
References
35(2)
3 Fundamentals of Structural Optimization
37(14)
3.1 Structural Optimization Approaches
37(3)
3.1.1 General Procedure
37(1)
3.1.2 Classification of Methods
38(2)
3.2 Problem Statement
40(3)
3.3 Lagrange Function
43(1)
3.4 Sensitivity Analysis
44(2)
3.4.1 Numerical Approach
44(1)
3.4.2 Analytical Approach
45(1)
3.5 Solution Methods
46(5)
3.5.1 Mathematical Programming
46(1)
3.5.2 Optimality Conditions (OC)
47(1)
References
47(4)
4 Identification of Structures
51(58)
4.1 One-material Structures
52(7)
4.1.1 Problem Statement
52(2)
4.1.2 Sensitivity Analysis
54(1)
4.1.3 Filtering
54(2)
4.1.4 Solving
56(1)
4.1.5 Optimization Process
57(1)
4.1.6 Multiple Load Cases
58(1)
4.2 One-material Stress-biased Structures
59(5)
4.2.1 Problem Statement
59(1)
4.2.2 Sensitivity Analysis and Stress Bias
60(2)
4.2.3 Solving
62(1)
4.2.4 Optimization Process
63(1)
4.3 Bi-material Structures
64(7)
4.3.1 Problem Statement
64(1)
4.3.2 Sensitivity Analysis and Stress Differentiation
65(3)
4.3.3 Bi-material Filtering
68(1)
4.3.4 Solving
69(1)
4.3.5 Optimization Process
70(1)
4.4 Examples
71(18)
4.4.1 One-material Structures
71(10)
4.4.2 One-material Stress-biased Structures
81(2)
4.4.3 Bi-material Structures
83(6)
4.5 Applications
89(20)
4.5.1 Solar Thermal Collectors
90(1)
4.5.1.1 Parabolic Trough Collectors
90(5)
4.5.1.2 Heliostats
95(5)
4.5.2 Ultra-light Beams
100(2)
References
102(7)
5 Internal Force Flow
109(48)
5.1 Preliminaries
110(1)
5.2 Continuum Topology Optimization (CTO) Approach
111(1)
5.3 Truss Topology Optimization (TTO) Approach
112(12)
5.3.1 Problem Statement
112(5)
5.3.2 Sensitivity Analysis and Solving
117(2)
5.3.3 Optimization Process
119(1)
5.3.4 Recommendations for Practical Application
120(1)
5.3.4.1 Setting Up the Optimization Problem
120(3)
5.3.4.2 Procedure
123(1)
5.4 Continuum-Truss Topology Optimization (CTTO) Approach
124(9)
5.4.1 Problem Statement
125(3)
5.4.2 Sensitivity Analysis and Solving
128(2)
5.4.3 Post-Processing
130(2)
5.4.4 Optimization Process
132(1)
5.5 Examples
133(18)
5.5.1 CTO Approach
133(5)
5.5.2 TTO Approach
138(13)
5.6 Applications
151(6)
5.6.1 Joints in Tunnel Linings
151(2)
5.6.2 Partial Area Loading in Tunnel Linings
153(1)
References
153(4)
6 Design of Cross-sections
157(26)
6.1 Problem Statement
159(2)
6.2 Equilibrium Iteration
161(2)
6.3 Sectional Optimization
163(3)
6.3.1 Reinforcement Amounts
165(1)
6.3.2 Cross-sectional Layout
165(1)
6.3.3 Material Weighting
165(1)
6.4 Solving
166(1)
6.4.1 Stress Integrals
166(1)
6.4.2 Optimization Problem
167(1)
6.5 Parameterization
167(3)
6.5.1 Plane Case
167(1)
6.5.2 Spatial Case
168(1)
6.5.3 Parameterization with Intentional Steering
169(1)
6.6 Examples
170(13)
6.6.1 Equilibrium Iteration
170(5)
6.6.2 Sectional Optimization
175(8)
References 183
Georgios Gaganelis is a structural designer for civil engineering structures and a freelance consultant in structural optimization. 2020 he received his PhD at the Ruhr University Bochum, Germany in the field of optimization strategies for concrete and steel-concrete-composite structures. His research interest focus on topology optimization and material driven steering. A special focus lies on ultra-light structures requiring minimal material efforts. Peter Mark is a full professor for Structural Concrete at the Ruhr University Bochum, Germany. He is researching on applied optimization methods and lightweight concrete structures since 20 years. He received his PhD in 1994 and the post-doctoral degree in 2006. He is Consultant Engineer and Independent Checking Engineer since 2008 and involved in several bridge, tunnel and building construction projects. Patrick Forman is a post-doctoral research fellow at the Institute of Concrete Structures at Ruhr University Bochum, Germany. He received his PhD in 2016. More than 10 years he is researching on lightweight shell and beam structures made of high-performance materials using various structural optimization techniques. Currently, he is technical and managing director of an interdisciplinary research centre on adaptive modularized construction methods.