Muutke küpsiste eelistusi

E-raamat: Optimization of the Electron Donor Supply to Sulphate Reducing Bioreactors Treating Inorganic Wastewater

(UNESCO-IHE Institute for Water Education, Delft, The Netherlands)
  • Formaat - EPUB+DRM
  • Hind: 76,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The main objective of this research was to optimize the electron donor supply in sulphate reducing bioreactors treating sulphate rich wastewater. Two types of electron donor were tested: lactate and slow release electron donors such as carbohydrate based polymers and lignocellulosic biowastes. Biological sulphate reduction was evaluated in different bioreactor configurations: the inverse fluidized bed, sequencing batch and batch reactors. The reactors were tested under steady-state, high-rate and transient-state feeding conditions of electron donor and acceptor, respectively. The results showed that the inverse fluidized bed reactor configuration is robust and resilient to transient and high-rate feeding conditions at a hydraulic retention time as low as 0.125 d. The biological sulphate reduction was limited by the COD:sulphate ratio (< 1.7). The results from artificial neural network modelling showed that the influent sulphate concentrations synergistically affected the COD removal efficiency and the sulphide production. Concerning the role of electron donors, the slow release electron donors allowed a biological sulphate reduction > 82% either using carbohydrate based polymers or lignocellulosic bio-wastes, in batch bioreactors. The biological sulphate reduction was limited by the hydrolysis-fermentation rate and by the complexity of the slow release electron donors.

List of Figures
xiv
List of Tables
xvi
Acknowledgments xix
Abstract xx
Resume xxii
Samenvatting xxiv
Sommario xxvi
Chapter 1 Introduction
1(8)
1.1 Background
2(2)
1.2 The PhD thesis structure
4(2)
1.3 References
6(3)
Chapter 2 Literature Review
9(42)
Abstract
10(1)
2.1 Anaerobic digestion
11(2)
2.1.1 Hydrolysis-fermentation
11(1)
2.1.2 Acetogenesis
11(1)
2.1.3 Methanogenesis
12(1)
2.2 The sulphate reduction process
13(5)
2.2.1 Sulphur cycle
13(1)
2.2.2 Biological sulphate reduction
14(3)
2.2.3 Sulphate reducing bacteria (SRB)
17(1)
2.3 Electron donors for SRB
18(6)
2.3.1 Organic solids
19(1)
2.3.1.1 Starch
19(1)
2.3.1.2 Cellulose
20(1)
2.3.1.3 Proteins
20(1)
2.3.1.4 Chitin
21(1)
2.3.2 Selection of electron donors for biological sulphate reduction
21(1)
2.3.2.1 Efficiency of sulphate removal
22(1)
2.3.2.2 Availability and cost of electron donor
22(1)
2.3.3 Environmental parameters affecting sulphate reduction
23(1)
2.3.3.1 Temperature
23(1)
2.3.3.2 pH and S2- concentration
23(1)
2.3.3.3 Hydraulic retention time (HRT)
24(1)
2.4 Conventional bioreactors for sulphate reduction
24(8)
2.4.1 UASB bioreactor
26(1)
2.4.2 Inverse fluidized bed reactor
26(2)
2.4.3 Factors affecting bioreactor performance
28(1)
2.4.3.1 Characteristics of organic substrate
28(1)
2.4.3.2 Particle size of electron donors
29(1)
2.4.3.3 Source of inoculum
30(1)
2.4.3.4 Physical and chemical conditions in a bioreactor
30(1)
2.4.3.5 Biomass morphology
31(1)
2.5 Modelling biological sulphate reduction
32(6)
2.5.1 Monod type modelling for biological sulphate reduction
32(1)
2.5.2 Artificial neural network (ANN) based modeling
33(1)
2.5.2.1 Fundamentals of ANN
33(1)
2.5.2.2 Multi-layer perceptron
34(1)
2.5.2.3 Back propagation algorithm
34(1)
2.5.2.4 Internal network parameters
35(1)
2.5.2.5 ANN modelling for bioreactors
36(2)
2.6 Conclusions
38(1)
2.7 References
38(13)
Chapter 3 Forecasting The Effect Of Feast And Famine Conditions On Biological Sulphate Reduction In An Anaerobic Inverse Fluidized Bed Reactor Using Artificial Neural Networks
51(38)
Abstract
52(1)
3.1 Introduction
53(3)
3.2 Material and methods
56(9)
3.2.1 Synthetic wastewater composition
56(1)
3.2.2 Carrier material
56(1)
3.2.3 Inoculum
56(1)
3.2.4 Anaerobic IFB bioreactor set up
57(1)
3.2.5 IFB bioreactor operational conditions
57(1)
3.2.6 RTD studies
58(1)
3.2.7 Chemical analysis
59(1)
3.2.8 Data processing
59(1)
3.2.8.1 Performance and comparison of the IFB bioreactors
59(1)
3.2.8.2 Evaluation of RTD
60(1)
3.2.8.3 ANN modelling
60(5)
3.3 Results
65(11)
3.3.1 RTD of the IFB bioreactor
65(1)
3.3.2 Biological sulphate reduction under steady state feeding conditions
66(5)
3.3.3 Biological sulphate reduction under non steady feeding conditions
71(1)
3.3.4 ANN Modelling
72(1)
3.3.4.1 Selecting the best training network parameters
72(2)
3.3.5 ANN model predictions and sensitivity analysis
74(2)
3.4 Discussion
76(6)
3.4.1 Performance of the IFB bioreactors under steady feeding conditions (periods I-IV)
76(1)
3.4.2 Effect of transient feeding conditions on IFB bioreactor operation
77(2)
3.4.3 Robustness of biological sulphate reduction in IFB bioreactors
79(1)
3.4.4 ANN modelling and transient feeding conditions
80(2)
3.5 Conclusions
82(1)
3.6 References
82(7)
Chapter 4 High Rate Biological Sulphate Reduction In A Lactate Fed Inverse Fluidized Bed Reactor At A Hydraulic Retention Time Of 3 H
89(24)
Abstract
90(1)
4.1 Introduction
91(1)
4.2 Material and methods
92(6)
4.2.1 Synthetic wastewater
92(1)
4.2.2 Inoculum
92(1)
4.2.3 Carrier material
92(1)
4.2.4 Anaerobic inverse fluidized bed bioreactor
93(1)
4.2.5 Hydrodynamic evaluation of the IFB
93(1)
4.2.5.1 Residence time distribution
93(1)
4.2.5.2 Bed expansion
94(1)
4.2.6 Reactor operation conditions
94(1)
4.2.7 Chemical analysis
95(2)
4.2.8 Kinetic analysis
97(1)
4.2.8.1 Second order substrate removal model
97(1)
4.2.8.2 The Stover-Kincannon model
97(1)
4.3 Results
98(6)
4.3.1 Hydrodynamic evaluation
98(1)
4.3.1.1 Residence time distribution
98(1)
4.3.1.2 Relative bed expansion
98(2)
4.3.2 Sulphate reduction in the high rate IFBB
100(1)
4.3.2.1 Sulphate and COD removal efficiency
100(2)
4.3.2.2 Sulphide production in the IFBB
102(1)
4.3.2.3 The pH in the IFBB during the biological sulphate reduction
102(1)
4.3.2.4 Biomass production during the IFBB operation
102(1)
4.3.3 Kinetic analysis of the IFBB performance
103(1)
4.3.3.1 Grau second order substrate removal
103(1)
4.3.3.2 The Stover-Kincannon model
103(1)
4.4 Discussion
104(3)
4.4.1 IFBB hydrodynamic performance
104(1)
4.4.2 Biomass retention in the IFBB
105(1)
4.4.3 Sulphate reduction in the IFBB at 3 h HRT
106(1)
4.5 Conclusions
107(1)
4.6 References
108(5)
Chapter 5 Effect Of The Initial Sulphate Concentration On The Start-Up Phase Of Fhe Biological Sulphate Reduction In Sequencing Batch Reactors
113(20)
Abstract
114(1)
5.1 Introduction
115(1)
5.2 Material and methods
116(2)
5.2.1 Source of biomass
116(1)
5.2.2 Synthetic wastewater
116(1)
5.2.3 Reactor set up
116(1)
5.2.4 Experimental design
117(1)
5.2.5 Evaluation of the performance of the reactor
117(1)
5.2.6 Chemical and biological analysis
118(1)
5.3 Results
118(7)
5.3.1 Anaerobic sulphate reduction in a SBR at low sulphate concentrations (L)
118(2)
5.3.2 Anaerobic sulphate reduction in a SBR at high sulphate concentrations (H)
120(5)
5.4 Discussion
125(2)
5.4.1 Sulphate reduction process in the SBR
125(1)
5.4.2 Robustness of biological sulphate reduction in SBR
126(1)
5.5 Conclusions
127(1)
5.6 References
128(5)
Chapter 6 The Effect Of Nitrogen And Electron Donor Feast-Famine Conditions On Biological Sulphate Reduction In Inorganic Wastewater Treatment
133(16)
Abstract
134(1)
6.1 Introduction
135(1)
6.2 Material and methods
136(2)
6.2.1 Synthetic wastewater
136(1)
6.2.2 Inoculum and batch bioreactor preparation
136(1)
6.2.3 Experimental design
137(1)
6.2.4 Chemical analysis
137(1)
6.2.5 Calculations
137(1)
6.3 Results
138(3)
6.3.1 Anaerobic sulphate reduction at different COD:SO424 ratios
138(3)
6.4 Discussion
141(5)
6.4.1 Electron donor utilization by sulphate reducing sludge
141(4)
6.4.2 Kinetics of sulphate reduction under feast and famine conditions in batch
145(1)
6.5 Conclusions
146(1)
6.6 References
146(3)
Chapter 7 The Effect Of Feast And Famine Conditions On Biological Sulphate Reduction In Anaerobic Sequencing Batch Reactors
149(22)
Abstract
150(1)
7.1 Introduction
151(1)
7.2 Material and methods
152(6)
7.2.1 The sulphate reducing biomass
152(1)
7.2.2 Synthetic wastewater
153(1)
7.2.3 Reactor set up
153(1)
7.2.4 Transient, feast-famine, feeding conditions in SBR operation
154(1)
7.2.5 Evaluation of the performance of SBR
155(1)
7.2.6 Chemical analysis
155(3)
7.3 Results
158(6)
7.3.1 Anaerobic sulphate reduction in SBR at steady feeding conditions
158(1)
7.3.2 Anaerobic sulphate reduction in SBR at transient feeding conditions
159(1)
7.3.3 Anaerobic sulphate reduction in SBR at transient feeding conditions in the absence of NH4+
159(5)
7.4 Discussion
164(3)
7.4.1 Sulphate reduction process at transient feeding conditions in the SBR
164(3)
7.5 Conclusions
167(1)
7.6 References
167(4)
Chapter 8 Carbohydrate Based Polymeric Materials As Slow Release Electron Donors For Sulphate Removal From Wastewater
171(20)
Abstract
172(1)
8.1 Introduction
173(1)
8.2 Material and methods
174(2)
8.2.1 Inoculum
174(1)
8.2.2 CBP as electron donors
174(1)
8.2.3 Synthetic wastewater composition
175(1)
8.2.4 Sulphate reducing and methanogenic activity test of anaerobic sludge
175(1)
8.2.5 SRED experiments
175(1)
8.2.6 Estimation of volumetric and specific rates
176(1)
8.2.7 Analysis
176(1)
8.3 Results
176(6)
8.3.1 Sulphate reduction and methanogenic activity of the anaerobic inoculum
176(1)
8.3.2 CBP characteristics
177(1)
8.3.3 Release of CODs from the CBP without inoculum in non-sterile anaerobic synthetic wastewater
178(1)
8.3.4 Release of CODs from the CBP in the presence of inoculum
179(2)
8.3.5 Sulphate reduction during the release of CODs from the CBP in the presence of inoculum
181(1)
8.4 Discussion
182(4)
8.4.1 Use of carbohydrate based polymeric materials as slow release electron donors
182(1)
8.4.2 Biological sulphate reduction using CBP as SRED
183(2)
8.4.3 Implications of CBP for biological sulphate reduction
185(1)
8.5 Conclusions
186(1)
8.6 References
186(5)
Chapter 9 Lignocellulosic Biowastes As Carrier Material And Slow Release Electron Donor For Sulphidogenesis Of Wastewater In An Inverse Fluidized Bed Bioreactor
191(28)
Abstract
192(1)
9.1 Introduction
193(3)
9.2 Material and methods
196(4)
9.2.1 Inoculum
196(1)
9.2.2 Synthetic wastewater composition
196(1)
9.2.3 Lignocellulose as SRED
197(1)
9.2.4 Anaerobic IFBB set up
198(1)
9.2.5 Sulphate reducing and methanogenic activity tests with anaerobic sludge
198(1)
9.2.6 L-SRED and sulphate reduction experiments
198(1)
9.2.7 L-SRED experiments in IFBB
199(1)
9.2.8 Qualitative assessment of SRB growth
199(1)
9.2.9 Calculations
199(1)
9.2.10 Analytical procedures
200(1)
9.3 Results
200(9)
9.3.1 Characterization of lignocelulosic materials
200(2)
9.3.2 Methanogenic and sulphate reducing activity of the anaerobic sludge
202(1)
9.3.3 CODs released from L-SRED in the absence of inoculum (natural release)
203(1)
9.3.4 CODs released from the L-SRED in the presence of inoculum (hydrolysis-fermentation step)
203(1)
9.3.5 Sulphate reduction during the release of CODs from the L-SRED in the presence of inoculum (sulphate reduction using L-SRED)
204(1)
9.3.6 Production of VFA in batch experiments
204(1)
9.3.7 Lignocellulose as carrier material and SRED in an IFBB
205(1)
9.3.7.1 IFBB performance
205(3)
9.3.7.2 Qualitative assessment of SRB growth
208(1)
9.4 Discussion
209(2)
9.4.1 Biological sulphate reduction using L-SRED in batch incubations
209(1)
9.4.2 Biological sulphate reduction using L-SRED in an IFBB
210(1)
9.5 Conclusions
211(1)
9.6 References
212(7)
Chapter 10 General Discussion and Perspectives
219(10)
10.1 Introduction
220(1)
10.2 General discussion and conclusions
221(3)
10.3 Future research work
224(1)
10.4 References
225(4)
Biography 229(1)
Publications 230(1)
Conferences 230
Luis Carlos Reyes-Alvarado (born in Córdoba, Veracruz, Mexico) obtained his PhD in Environmental Technology. He joined the Universidad Veracruzana (Mexico) where he obtained the degree of Chemical Engineering and further a Master in Food Science and Technology, after which he received an ALFA grant within the SUPPORT (Sustainable Use of Photosynthesis Products & Optimum Resource Transformation) project at the TU Graz (Austria). Luis developed and defended his PhD thesis through the Erasmus Mundus Joint Doctorate Programme in Environmental Technologies for Contaminated Solids, Soils and Sediments (ETeCoS3) on December 16th, 2016. His research was focused on the optimization of electron donor supply to sulphate reducing bioreactors treating inorganic wastewater rich in sulphate and carried out at different institutions: the UNESCO-IHE (Delft, The Netherlands), the Universidad Veracruzana (Veracruz, Mexico), the INRA-Laboratoire de Biotechnologie de lEnvironnement (Narbonne, France) and the University of Cassino and Southern Lazio (Cassino, Italy). Luis' main interest is understanding the engineering aspects of biological processes, resource recovery from waste and the development of eco-technologies for waste remediation.