Muutke küpsiste eelistusi

E-raamat: Optimization and Learning: 7th International Conference, OLA 2024, Dubrovnik, Croatia, May 13-15, 2024, Revised Selected Papers

Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 7th International Conference on Optimization and Learning, OLA 2024, held in Dubrovnik, Croatia, during May 1315, 2024.





The 24 full papers presented here were carefully reviewed and selected from 64 submissions. They were organized in the following topical sections: synergies between optimization and machine learning; enhancing optimization and learning techniques; transportation and routing; and applications.
.- Synergies Between Optimization and Machine Learning.

.- How is the objective function of the Feature Selection problem
formulated?.

.- HOTS : A containers resource allocation hybrid method using machine.

.- Optimisation-based classication tree: A game theoretic approach to group
fairness.

.- JaxDecompiler: Redening Gradient-Informed Software Design.

.- Adapted Q-learning for the Blocking Job Shop Scheduling Problem.

.- NeuroLGP-SM: A Surrogate-assisted Neuroevolution Approach using Linear
Genetic Programming.

.- Neural Architecture Tuning: A BO-Powered NAS Tool.

.- Enhancing Optimization and Learning Techniques.

.- A Multi-objective Clustering Algorithm Integrating Intra-clustering and
Inter-clustering Measures.

.- A Bayesian Optimization Approach to Algorithm Parameter Tuning in
Constrained Multiobjective Optimization.

.- Evidence on the Regularisation Properties of Maximum-Entropy Reinforcement
Learning.

.- A Benchmark for Missing Data Imputation Techniques: development
perspectives and performance comparative.

.- Approaching Single-Episode Survival Reinforcement Learning with
Safety-Threshold Q-Learning.

.- Feature Selection Based on Membrane Clustering.

.- Transportation and Routing.

.- Learning Insertion Patterns to Enhance Operational Eciency in Large-Scale
Dial-a-Ride Systems

.- A Constraint Programming Approach for the Preference Tourist Trip Design
Problem.

.- Solving a shareable-setup time prize collection VRP applied to an
electrical maintenance sector.

.- Applications.

.- Biologically-Inspired Algorithms for Adaptive Non-Player Character
Behavior in Video-Games.

.- Optimization of Hydro Generation and Load Forecasting Based On LSTN.

.- Patient Visits Forecasting in the Post-Pandemic Era at Emergency
Departments.

.- Nature-Inspired Techniques for Combinatorial Reverse Auctions in
Electricity Consumption.

.- Robust Models for Learning Languages.

.- Advancing Road Safety Metrics: Exploring Index construction.

.- S3EA: A Self-Supervised Stacked Ensemble Framework for Robust Anomaly
Detection to Reduce  False Alarms.

.- A Parallel Genetic Algorithm for Qubit Mapping on Noisy Intermediate-Scale
Quantum Machines.