Muutke küpsiste eelistusi

E-raamat: Optimization of Micro Processes in Fine Particle Agglomeration by Pelleting Flocculation

(Chair of Minerals Processing, Brandenburg Technical University, Cottbus-Senftenberg, Germany)
  • Formaat: 152 pages
  • Ilmumisaeg: 22-Jun-2016
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781317371472
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 152 pages
  • Ilmumisaeg: 22-Jun-2016
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781317371472

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Effective management of waste sludges and slurries produced from many industrial processes such as water and wastewater treatment, mineral processing, food processing etc. is very important from an environmental and economic perspective. Improvement in sludge processing can serve as a tool for improving the environmental quality, as well as natural resource conservation through water re-use, nutrient recycling and biomass utilization. Nowadays, a large proportion of sludge management cost goes into the solid-liquid separation and dewatering prior to eventual disposal or utilization.

Solid-liquid separation is an important unit operation either upstream or downstream of the aforementioned processes and it involves the aggregation or agglomeration of particles in suspension or slurries using a variety of techniques. Despite advances in colloidal science, progress in process engineering with respect to equipment design and development for residuals management has only been incremental but not revolutionary.

This book intends to contribute to scholarly discourse by providing fundamental and theoretical background of the above-subject matter and as well as an overview of recent advances especially in the ancillary fields of colloidal science, water chemistry, hydrodynamics and micro-process engineering. It will also build on previous studies on turbulence-induced flocculation and its application to solid-liquid separation as it has been reported as one of the most promising solid-liquid separation techniques by reporting results of bench-scale testing of a patented pre-treatment device.

Finally, the book will set the stage for future research in this field by discussing scale-up options and potentials for industrial applications.

Acknowledgements xix
List of tables
xxi
List of figures
xxiii
List of symbols
xxvii
List of abbreviations
xxix
1 Background, problem statement and outline
1(6)
1.1 Introduction & study background
1(1)
1.2 State-of-the-art in residuals processing
2(1)
1.3 Problem statement and hypothesis
2(1)
1.4 Overview and scope of study
3(1)
1.5 Outline and structure of the thesis
4(3)
2 Fundamentals of flocculation and colloidal stability
7(16)
2.1 Structure formation in dispersed systems
7(1)
2.2 Colloidal stability and interfacial forces
8(1)
2.3 Kinetics of fine particle aggregation
9(12)
2.3.1 Perikinetic particle aggregation
11(1)
2.3.2 Hydrodynamic-mediated interactions
11(1)
2.3.2.1 Classical orthokinetic aggregation
11(2)
2.3.2.1 Particles in laminar shear
13(1)
2.3.2.1 Particles in turbulent shear
13(1)
2.3.3 Extended orthokinetic flocculation
14(1)
2.3.3.1 Mechanisms of pelleting flocculation
15(1)
2.3.3.2 Pelleting reactor systems
16(1)
2.3.3.2 Annular-based reactors
16(1)
2.3.3.2 Sludge blanket clarifiers
16(1)
2.3.3.3 Structure and morphology of pellet floes
17(2)
2.3.4 Polymer-mediated interactions
19(1)
2.3.4.1 Charge neutralization
20(1)
2.3.4.2 Polymer bridging
20(1)
2.3.4.3 Charge-patch formation
21(1)
2.4 Flocculation assessment techniques
21(2)
3 Hydrodynamics and floe stability in sheared systems
23(12)
3.1 Hydrodynamics and fluid-particle interactions
23(3)
3.1.1 Fluid mixing and particle dispersion
23(1)
3.1.2 Micro, meso, and macro mixing
24(1)
3.1.3 Characterization of fluid-particle mixing
25(1)
3.2 Turbulent aggregation processes
26(9)
3.2.1 Energy dissipation in turbulent flow
26(1)
3.2.2 Agglomerate strength and hydrodynamic stress
27(2)
3.2.3 Fluid-particle interactions and floe stability
29(4)
3.2.4 Mechanisms of aggregate disruption
33(2)
4 Materials and experimental methods
35(12)
4.1 Test materials
35(6)
4.1.1 Kaolin slurry
35(1)
4.1.2 Ferric hydroxide slurry
35(1)
4.1.3 Synthetic polymers
35(2)
4.1.4 Jar test apparatus
37(2)
4.1.5 Batch vortex reactor
39(1)
4.1.6 Continuous vortex reactor
40(1)
4.1.7 Gravity dewatering chamber
41(1)
4.2 Experimental methods
41(6)
4.2.1 Preparation of substrates and reagents
41(1)
4.2.2 Flocculation and sedimentation tests
42(1)
4.2.3 Surface charge measurements
42(1)
4.2.4 Characterization of the reactor supernatant
42(1)
4.2.5 Flow stream characterization
43(1)
4.2.6 Agglomerate preparation and characterization
44(3)
5 Design concept and process description
47(14)
5.1 Structure formation and hydrodynamic conditions
47(14)
5.1.1 Theoretical description of the agglomeration process
47(2)
5.1.2 Hydrodynamics and flow pattern in the flow units
49(1)
5.1.3 Experimental analysis of hydrodynamics and vortex pattern
50(1)
5.1.3.1 Description of the experimental setup and limitations
51(1)
5.1.3.2 Effect of agitation speed on the flow stream and vortex pattern
52(2)
5.1.3.3 Effect of reactor geometry on the flow stream and vortex pattern
54(1)
5.1.3.4 Description of the flow stream and vortex pattern along the rotor-stator cavity
54(2)
5.1.3.5 Process relevance of the flow conditions
56(5)
6 Mixing and hydrodynamic analysis
61(6)
6.1 Theoretical analysis of the flow conditions
61(1)
6.3 Fluid flow and mixing characteristics
61(3)
6.4 Micro and macro mixing
64(3)
7 Optimization of the micro processes
67(20)
7.1 Optimization of the physicochemical process
67(11)
7.1.1 Single and dual polymer conditioning
68(1)
7.1.2 Particle-polymer interaction and selection of optimum dose
69(1)
7.1.3 Polymer-dose response in single polymer treatment
70(2)
7.1.4 Polymer-dose response in dual-polymer additions
72(3)
7.1.5 Supernatant clarity at the optimum dosage
75(1)
7.1.6 Specific sediment volume at optimum dosage
76(1)
7.1.7 Process relevance of the physicochemical parameters
77(1)
7.2 Optimization of the pelleting process
78(6)
7.2.1 Effects of micro processes on the pelleting process
78(4)
7.2.2 Effect of optimum dose on the process efficiency
82(1)
7.2.3 Effects of micro processes on the solids fraction
82(1)
7.2.4 Predicted and effective polymer dose
83(1)
7.3 Process relevant pellet characteristics
84(3)
7.3.1 Image and particle size analysis
84(1)
7.3.2 Agglomerate strength analysis
85(2)
8 Conclusions and perspectives
87(4)
8.1 Effect of rotor-stator configuration
87(1)
8.2 Effect of process conditions
88(1)
8.3 Future perspectives
88(1)
8.3.1 Effect of other process conditions
88(1)
8.3.2 Computational study of the fluid flow
89(1)
8.3.3 Numerical modeling of the pelleting process
89(1)
8.4 Concluding remarks
89(2)
Appendix 91(16)
References 107(14)
List of publications 121
Benjamin Oyegbile is currently a Research Assistant at the Chair of Minerals Processing, Brandenburg Technical University Cottbus-Senftenberg Germany. His research interest is in the field of residuals and biogenic waste processing, as well as water and natural resource management. He is a member of several professional association such as International Solid Waste Association (ISWA) and American Water Works Association (AWWA).