|
|
ix | |
|
|
xiii | |
|
|
xv | |
|
|
xix | |
Introduction |
|
1 | (4) |
|
1 Artificial Neural Networks |
|
|
5 | (14) |
|
1.1 Artificial Neural Network Cell (Perceptron) |
|
|
5 | (2) |
|
1.2 Artificial Neural Network Models |
|
|
7 | (8) |
|
1.2.1 Feedforward Network Models |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
9 | (2) |
|
1.2.4 Multilayer Perceptron |
|
|
11 | (1) |
|
1.2.5 Error Backpropagation Algorithm |
|
|
12 | (1) |
|
1.2.6 The Nonlinear Autoregressive Network with Exogenous Inputs (NARX) Type ANN |
|
|
13 | (2) |
|
1.3 Modeling of a System with ANN |
|
|
15 | (4) |
|
1.3.1 Advanced Modeling (Series-Parallel Modeling) |
|
|
15 | (4) |
|
|
19 | (12) |
|
2.1 Types of Genetic Algorithms |
|
|
21 | (1) |
|
2.1.1 Micro Genetic Algorithm (μGA) |
|
|
21 | (1) |
|
2.1.2 Steady-State Genetic Algorithm |
|
|
22 | (1) |
|
2.1.3 Hierarchic Genetic Algorithm (HGA) |
|
|
22 | (1) |
|
2.1.4 Messy Genetic Algorithm (mGA) |
|
|
22 | (1) |
|
2.2 Scheme Theorem and Genetic Algorithm Operators |
|
|
22 | (9) |
|
|
23 | (1) |
|
2.2.2 Creating First Population (Σ) |
|
|
23 | (1) |
|
2.2.3 Size of the Population (μ) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
27 | (1) |
|
2.2.8 Fitness Value Scaling |
|
|
28 | (3) |
|
3 Ant Colony Optimization (ACO) |
|
|
31 | (6) |
|
|
31 | (2) |
|
|
33 | (1) |
|
|
34 | (3) |
|
3.3.1 Pheromone Vaporization |
|
|
35 | (2) |
|
4 An Application for Process System Control |
|
|
37 | (32) |
|
4.1 Modeling of the System with ANN |
|
|
39 | (5) |
|
4.1.1 Collection of the Training Data |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
42 | (2) |
|
4.2 PID Controller Design with GA |
|
|
44 | (10) |
|
4.2.1 Structure of the Designed Controller |
|
|
44 | (2) |
|
4.2.2 Genetically Coding of the PID Parameters |
|
|
46 | (1) |
|
4.2.3 Learning of the PID Parameters by GA |
|
|
46 | (1) |
|
4.2.4 Transformation of the System Output to GA Conformity Value |
|
|
47 | (1) |
|
4.2.5 Used Genetic Operators |
|
|
47 | (1) |
|
4.2.6 Performance of the Genetic-PID Controller |
|
|
48 | (6) |
|
4.3 PID Controller Design with ACO |
|
|
54 | (8) |
|
|
56 | (2) |
|
4.3.2 Performance of the ACO-PID Controller |
|
|
58 | (4) |
|
4.4 Ziegler-Nichols (ZN) Method on PID Computation |
|
|
62 | (7) |
|
4.4.1 System Response to Step Inputs |
|
|
64 | (1) |
|
4.4.2 System Behavior to the Transition between Step Inputs |
|
|
65 | (1) |
|
4.4.3 Behavior of the System When Distortion Was Imported to the System |
|
|
66 | (1) |
|
4.4.4 Trajectory Tracking Responses of the ZN-PID Controller |
|
|
66 | (3) |
|
|
69 | (4) |
|
|
73 | (6) |
|
|
73 | (6) |
|
A.1.1 Ant Colony Optimization Solver |
|
|
73 | (4) |
|
|
77 | (1) |
|
|
78 | (1) |
References |
|
79 | (4) |
Index |
|
83 | |