|
|
xi | |
|
Section One Practitioners and Products |
|
|
1 | (114) |
|
Robust portfolio optimization using second-order cone programming |
|
|
3 | (20) |
|
|
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (2) |
|
Constraints on systematic and specific risk |
|
|
6 | (6) |
|
Constraints on risk using more than one model |
|
|
12 | (4) |
|
Combining different risk measures |
|
|
16 | (2) |
|
|
18 | (4) |
|
|
22 | (1) |
|
|
22 | (1) |
|
Novel approaches to portfolio construction: multiple risk models and multisolution generation |
|
|
23 | (30) |
|
|
|
|
|
|
23 | (1) |
|
|
23 | (2) |
|
Portfolio construction using multiple risk models |
|
|
25 | (10) |
|
|
33 | (1) |
|
Discussion and conclusions |
|
|
34 | (1) |
|
|
35 | (16) |
|
|
39 | (2) |
|
|
41 | (10) |
|
|
51 | (2) |
|
|
52 | (1) |
|
Optimal solutions for optimization in practice |
|
|
53 | (40) |
|
|
|
|
|
53 | (1) |
|
|
53 | (2) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
The need for optimization |
|
|
55 | (1) |
|
Applications of portfolio optimization |
|
|
55 | (1) |
|
|
55 | (1) |
|
Long-short portfolio construction |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
56 | (1) |
|
Mean-variance optimization |
|
|
56 | (2) |
|
|
56 | (1) |
|
The BITA optimizer---functional summary |
|
|
57 | (1) |
|
|
58 | (8) |
|
|
58 | (1) |
|
|
58 | (1) |
|
Reformulation of mean-variance optimization |
|
|
59 | (2) |
|
BITA Robust applications to controlling FE |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (3) |
|
|
65 | (1) |
|
|
65 | (1) |
|
BITA GLO™ Gain/loss optimization |
|
|
66 | (7) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
Adding 25% investment constraint |
|
|
70 | (1) |
|
Down-trimming of emerging market returns |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (5) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
Incorporation of alpha and risk model information |
|
|
76 | (2) |
|
Practical applications: charities and endowments |
|
|
78 | (8) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
80 | (2) |
|
Trustees' attitude to risk |
|
|
82 | (1) |
|
Decision making under uncertainty |
|
|
83 | (1) |
|
Practical implications of risk aversion |
|
|
84 | (2) |
|
Bespoke optimization---putting theory into practice |
|
|
86 | (1) |
|
Request: produce optimal portfolio with exactly 50 long and 50 short holdings |
|
|
86 | (1) |
|
Request: how to optimize in the absence of forecast returns |
|
|
86 | (1) |
|
|
87 | (6) |
|
Appendix A: BITA Robust optimization |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (3) |
|
The Windham Portfolio Advisor |
|
|
93 | (22) |
|
|
|
93 | (1) |
|
|
93 | (1) |
|
|
94 | (3) |
|
|
94 | (1) |
|
|
94 | (3) |
|
|
97 | (1) |
|
Within-horizon risk measurement |
|
|
97 | (4) |
|
|
97 | (1) |
|
|
97 | (4) |
|
|
101 | (3) |
|
|
101 | (1) |
|
|
101 | (3) |
|
|
104 | (1) |
|
|
104 | (11) |
|
|
104 | (1) |
|
|
104 | (3) |
|
|
107 | (4) |
|
|
111 | (2) |
|
|
113 | (2) |
|
|
115 | (186) |
|
Modeling, estimation, and optimization of equity portfolios with heavy-tailed distributions |
|
|
117 | (26) |
|
|
|
|
|
|
117 | (1) |
|
|
117 | (2) |
|
Empirical evidence from the Dow Jones Industrial Average components |
|
|
119 | (2) |
|
Generation of scenarios consistent with empirical evidence |
|
|
121 | (9) |
|
The portfolio dimensionality problem |
|
|
121 | (5) |
|
Generation of return scenarios |
|
|
126 | (4) |
|
The portfolio selection problem |
|
|
130 | (6) |
|
Review of performance ratios |
|
|
132 | (2) |
|
An empirical comparison among portfolio strategies |
|
|
134 | (2) |
|
|
136 | (7) |
|
|
140 | (3) |
|
Staying ahead on downside risk |
|
|
143 | (18) |
|
|
|
143 | (1) |
|
|
143 | (2) |
|
Measuring downside risk: VaR and EVaR |
|
|
145 | (5) |
|
Definition and properties |
|
|
145 | (2) |
|
Modeling EVaR dynamically |
|
|
147 | (3) |
|
The asset allocation problem |
|
|
150 | (3) |
|
|
153 | (5) |
|
|
158 | (3) |
|
|
159 | (2) |
|
Optimization and portfolio selection |
|
|
161 | (18) |
|
|
|
|
161 | (1) |
|
|
161 | (1) |
|
The Forsey-Sortino Optimizer |
|
|
162 | (5) |
|
|
162 | (3) |
|
Optimize or measure performance |
|
|
165 | (2) |
|
|
167 | (12) |
|
Appendix: Formal definitions and procedures |
|
|
171 | (6) |
|
|
177 | (2) |
|
Computing optimal mean/downside risk frontiers: the role of ellipticity |
|
|
179 | (22) |
|
|
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (4) |
|
|
184 | (6) |
|
|
190 | (4) |
|
|
194 | (4) |
|
|
198 | (3) |
|
|
198 | (3) |
|
Portfolio optimization with ``Threshold Accepting'': a practical guide |
|
|
201 | (24) |
|
|
|
|
201 | (1) |
|
|
201 | (3) |
|
Portfolio optimization problems |
|
|
204 | (6) |
|
|
204 | (5) |
|
|
209 | (1) |
|
|
210 | (5) |
|
|
210 | (1) |
|
|
211 | (4) |
|
|
215 | (3) |
|
|
218 | (2) |
|
Benchmarking the algorithm |
|
|
218 | (1) |
|
|
218 | (1) |
|
Degenerate objective functions |
|
|
219 | (1) |
|
The neighborhood and the thresholds |
|
|
219 | (1) |
|
|
220 | (5) |
|
|
221 | (1) |
|
|
221 | (4) |
|
Some properties of averaging simulated optimization methods |
|
|
225 | (22) |
|
|
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (3) |
|
|
229 | (1) |
|
Section 3: Finite sample properties of estimators of alpha and tracking error |
|
|
230 | (5) |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
236 | (2) |
|
Section 5: General linear restrictions |
|
|
238 | (3) |
|
|
241 | (3) |
|
|
244 | (3) |
|
|
244 | (1) |
|
|
245 | (2) |
|
Heuristic portfolio optimization: Bayesian updating with the Johnson family of distributions |
|
|
247 | (36) |
|
|
|
247 | (1) |
|
|
247 | (1) |
|
A brief history of portfolio optimization |
|
|
248 | (3) |
|
|
251 | (6) |
|
|
251 | (3) |
|
|
254 | (2) |
|
Simulating Johnson random variates |
|
|
256 | (1) |
|
The portfolio optimization algorithm |
|
|
257 | (4) |
|
|
257 | (3) |
|
The threshold acceptance algorithm |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (3) |
|
|
265 | (6) |
|
|
266 | (2) |
|
The coefficient of disappointment aversion, A |
|
|
268 | (1) |
|
The importance of non-Gaussianity |
|
|
268 | (3) |
|
|
271 | (1) |
|
|
272 | (11) |
|
|
278 | (5) |
|
More than you ever wanted to know about conditional value at risk optimization |
|
|
283 | (18) |
|
|
|
283 | (1) |
|
Introduction: Risk measures and their axiomatic foundations |
|
|
283 | (2) |
|
A simple algorithm for CVaR optimization |
|
|
285 | (3) |
|
|
288 | (4) |
|
Do we need downside risk measures? |
|
|
288 | (1) |
|
How much momentum investing is in a downside risk measure? |
|
|
288 | (2) |
|
Will downside risk measures lead to ``under-diversification''? |
|
|
290 | (2) |
|
Scenario generation I: The impact of estimation and approximation error |
|
|
292 | (3) |
|
|
292 | (1) |
|
|
293 | (2) |
|
Scenario generation II: Conditional versus unconditional risk measures |
|
|
295 | (1) |
|
Axiomatic difficulties: Who has CVaR preferences anyway? |
|
|
296 | (2) |
|
|
298 | (3) |
|
|
298 | (1) |
|
|
298 | (3) |
Index |
|
301 | |