Muutke küpsiste eelistusi

E-raamat: Optoelectronic Integration: Physics, Technology and Applications

Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A concise but comprehensive presentation of the basic physics, materials, fabrication techniques, and systems applications of optoelectronic integration, including fundamental device physics and III-V semiconductor growth and processing; the basic design and integration of lasers, photodetectors, waveguides, and transistors; optoelectronic integrated circuits, photonic integrated circuits, and vertical optoelectronic functional device arrays; and packaging and systems architecture for applications in optical telecommunications, interconnections, and signal processing. Annotation copyright Book News, Inc. Portland, Or.

As we approach the end of the present century, the elementary particles of light (photons) are seen to be competing increasingly with the elementary particles of charge (electrons/holes) in the task of transmitting and processing the insatiable amounts of infonnation needed by society. The massive enhancements in electronic signal processing that have taken place since the discovery of the transistor, elegantly demonstrate how we have learned to make use of the strong interactions that exist between assemblages of electrons and holes, disposed in suitably designed geometries, and replicated on an increasingly fine scale. On the other hand, photons interact extremely weakly amongst themselves and all-photonic active circuit elements, where photons control photons, are presently very difficult to realise, particularly in small volumes. Fortunately rapid developments in the design and understanding of semiconductor injection lasers coupled with newly recognized quantum phenomena, that arise when device dimensions become comparable with electronic wavelengths, have clearly demonstrated how efficient and fast the interaction between electrons and photons can be. This latter situation has therefore provided a strong incentive to devise and study monolithic integrated circuits which involve both electrons and photons in their operation. As chapter I notes, it is barely fifteen years ago since the first demonstration of simple optoelectronic integrated circuits were realised using m-V compound semiconductors; these combined either a laser/driver or photodetector/preamplifier combination.

Muu info

Springer Book Archives
Foreword; P.N. Robson. Preface; O. Wada.
1. Overview; O. Wada.
2. Physical Basis of Optoelectronic Integration; H. Matsueda.
3. III-V Compound Semiconductor Epitaxy for Optoelectronic Integration; M. Ilegems.
4. Advanced Semiconductor Processing Technology; T. Ishikawa, Y. Katayama.
5. Long Wavelength Lasers and OEIC Transmitters; T.P. Lee, Yu-Hwa Lo.
6. Photodetectors and OEIC Receivers; J. Mun.
7. Waveguide Based Photonic Integrated Circuits; U. Koren.
8. Electrophotonic Devices for Signal Processing and Computing; K. Kasahara.
9. OEICs for Optical Interconnections; S.D. Mukherjee.
10. Hybrid Optoelectronic Integration and Packaging; H. Lockwood, P. Haugsjaa, C. Armiento, R. Boudreau.
11. Network Systems Application and Markets for Optoelectronic Integration; A. Bergh, M. Goodman, R. Leheny. Subject Index.