Muutke küpsiste eelistusi

E-raamat: Ordinary Differential Equations with Applications

  • Formaat: PDF+DRM
  • Sari: Texts in Applied Mathematics 34
  • Ilmumisaeg: 19-May-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031516528
  • Formaat - PDF+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Texts in Applied Mathematics 34
  • Ilmumisaeg: 19-May-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031516528

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book, developed during 20 years of the author teaching differential equations courses at his home university, is designed to serve as a text for a graduate level course focused on the central theory of the subject with attention paid to applications and connections to other advanced topics in mathematics. Core theory includes local existence and uniqueness, the phase plane, Poincaré-Bendixson theory, Lyapunov and linearized stability, linear systems, Floquet theory, the GrobmanHartman theorem, persistence of rest points and periodic orbits, the stable and center manifold theorems, and bifurcation theory. This edition includes expanded treatment of deterministic chaos, perturbation theory for periodic solutions, boundary value problems, optimization, and a wide range of their applications. In addition, it contains a formulation and new proof of a theorem on instability of rest points in the presence of an eigenvalue with positive real part, and new proofs of differential inequalities and Lyapunovs center theorem. New sections present discussions of global bifurcation, the CrandallRabinowitz theorem, and Alekseevs formula. Of particular note is a new chapter on basic control theory, a discussion of optimal control, and a proof of a useful special case of the maximum principle. A key feature of earlier editions, a wide selection of original exercises, is respected in this edition with the inclusion of a wealth of new exercises.  Reviews of the first edition: As an applied mathematics text on linear and nonlinear equations, the book by Chicone is written with stimulating enthusiasm. It will certainly appeal to many students and researchers.F. Verhulst, SIAM Review  The author writes lucidly and in an engaging conversational style. His book is wide-ranging in its subject matter, thorough in its presentation, and written at a generally high level of generality, detail, and rigor.D. S. Shafer, Mathematical Reviews
Ordinary Differential Equations.- Linear Systems and Stability of
Nonlinear Systems.- Applications.- Hyperbolic Theory.- Continuation of
Periodic Solutions.- Homoclinic Orbits, Melnikovs Method, and Chaos.-
Averaging.- Local Bifurcation.
Carmen Chicone is an emeritus professor of mathematics at the University of Missouri. He has authored two books, coauthored a third, and published over 100 research articles. His recent research interests are in the qualitative theory of ordinary and partial differential equations, applications of differential equations to mathematical models in science and engineering, and the development of numerical methods to obtain viable predictions from physically realistic model problems.