Muutke küpsiste eelistusi

E-raamat: Ordinary Differential Equations And Boundary Value Problems - Volume I: Advanced Ordinary Differential Equations

(Univ Of Tennessee At Chattanooga, Usa), (Univ Of New Orleans, Usa), (Baylor Univ, Usa), (Univ Of Tennessee At Chattanooga, Usa)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 35,04 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors give a treatment of the theory of ordinary differential equations (ODEs) that is excellent for a first course at the graduate level as well as for individual study. The reader will find it to be a captivating introduction with a number of non-routine exercises dispersed throughout the book.The authors begin with a study of initial value problems for systems of differential equations including the Picard and Peano existence theorems. The continuability of solutions, their continuous dependence on initial conditions, and their continuous dependence with respect to parameters are presented in detail. This is followed by a discussion of the differentiability of solutions with respect to initial conditions and with respect to parameters. Comparison results and differential inequalities are included as well.Linear systems of differential equations are treated in detail as is appropriate for a study of ODEs at this level. Just the right amount of basic properties of matrices are introduced to facilitate the observation of matrix systems and especially those with constant coefficients. Floquet theory for linear periodic systems is presented and used to analyze nonhomogeneous linear systems.Stability theory of first order and vector linear systems are considered. The relationships between stability of solutions, uniform stability, asymptotic stability, uniformly asymptotic stability, and strong stability are examined and illustrated with examples as is the stability of vector linear systems. The book concludes with a chapter on perturbed systems of ODEs.
Preface vii
1 Systems of Differential Equations
1(28)
1.1 Introduction
1(1)
1.2 The Initial Value Problem (IVP)
2(2)
1.3 The Picard Existence Theorem
4(14)
1.4 The Peano Existence Theorem
18(11)
2 Continuation of Solutions and Maximal Intervals of Existence
29(22)
2.1 Continuation of Solutions
29(8)
2.2 Kamke Convergence Theorem
37(5)
2.3 Continuous Dependence of Solutions on Initial Conditions
42(3)
2.4 Continuity of Solutions wrt Parameters
45(6)
3 Smooth Dependence on Initial Conditions and Smooth Dependence on Parameters
51(14)
3.1 Differentiation of Solutions wrt Initial Conditions
51(4)
3.2 Differentiation of Solutions wrt Parameters
55(6)
3.3 Maximal Solutions and Minimal Solutions
61(4)
4 Some Comparison Theorems and Differential Inequalities
65(12)
4.1 Comparison Theorems and Differential Inequalities
65(8)
4.2 Kamke Uniqueness Theorem
73(4)
5 Linear Systems of Differential Equations
77(44)
5.1 Linear Systems of Differential Equations
77(5)
5.2 Some Properties of Matrices
82(3)
5.3 Infinite Series of Matrices and Matrix-Valued Functions
85(3)
5.4 Linear Matrix System
88(8)
5.5 Higher Order Differential Equations
96(7)
5.6 Systems of Equations with Constant Coefficient Matrices
103(13)
5.7 The Logarithm of a Matrix
116(5)
6 Periodic Linear Systems and Floquet Theory
121(14)
6.1 Periodic Homogeneous Linear Systems and Floquet Theory
121(5)
6.2 Periodic Nonhomogeneous Linear Systems and Floquet Theory
126(9)
7 Stability Theory
135(14)
7.1 Stability of First Order Systems
135(5)
7.2 Stability of Vector Linear Systems
140(9)
8 Perturbed Systems and More on Existence of Periodic Solutions
149(14)
8.1 Perturbed Linear Systems
149(14)
Bibliography 163(2)
Index 165