Muutke küpsiste eelistusi

E-raamat: Organic Electronics: Foundations to Applications

(Professor of Electrical Engineering & Computer Science, Physics, and Materials Science & Engineering, University of Michigan)
  • Formaat: 1100 pages
  • Ilmumisaeg: 22-Jul-2020
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780191053566
  • Formaat - PDF+DRM
  • Hind: 127,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 1100 pages
  • Ilmumisaeg: 22-Jul-2020
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780191053566

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook provides a basic understanding of the principles of the field of organic electronics, through to their applications in organic devices. Useful for both students and practitioners, it is a teaching text as well as an invaluable resource that serves as a jumping-off point for those interested in learning, working and innovating in this rapidly growing field.

Organics serve as a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to fit onto irregularly shaped surfaces such as foldable smart phones. Organic electronics is at the core of the global organic light emitting device (OLED) display industry. OLEDs also have potential uses as lighting sources. Other emerging organic electronic applications include organic solar cells, and organic thin film transistors useful in medical and a range of other sensing, memory and logic applications.

This book is a product of both one and two semester courses that have been taught over a period of more than two decades. It is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. A background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie somewhat outside of the current mainstream of the field, but are nevertheless important.

Arvustused

Within its 1,000 pages, this book has everything: It is a comprehensive and accessible exposition of its topic, organic electronics; it is beautifully illustrated; it contains copious references to the literature and includes instructive exercises. The book has the advantage of having been written by a highly accomplished researcher who has also road-tested teaching this material on many occasions ... The author is to be thanked and congratulated for undertaking this mammoth project, which has provided what one anticipates will be the definitive organic electronics textbook for many years to come. * K. Alan Shore, Optics & Phototonics News * The definitive organic electronics textbook for many years to come ... this book has everything: It is a comprehensive and accessible exposition of its topic, organic electronics; it is beautifully illustrated; it contains copious references to the literature and includes instructive exercises. The book has the advantage of having been written by a highly accomplished researcher who has also road-tested teaching this material on many occasions. * K. Alan Shore, Optics & Photonics News, March 2021 *

Part I Foundations
1(292)
1 Introduction to organic electronics
3(28)
1.1 What is an organic semiconductor?
4(4)
1.2 The differences between organic and inorganic semiconductors
8(8)
1.3 70 years of advances in organic electronics
16(5)
1.4 Aligning on language: a few useful definitions
21(3)
1.5 The myths of organic electronics
24(1)
1.6 Summing up
25(3)
Further reading
28(1)
Problems
28(1)
References
29(2)
2 Bulk and thin film organic crystal structures
31(43)
2.1 Molecular materials: definitions
32(1)
2.2 Lattices and crystal structure
32(3)
2.3 The reciprocal lattice, Miller indexes, and the Brillouin zone
35(1)
2.4 Crystal energy and cohesion
36(14)
2.4.1 Ionic bonds
37(3)
2.4.2 Covalent and metallic bonds
40(2)
2.4.3 Dipolar interactions and van der Waals bonds
42(1)
2.4.3.1 Interactions between fixed dipoles
43(1)
2.4.3.2 Dipole-induced dipole interactions
44(1)
2.4.3.3 Induced dipole-induced dipole (London) interactions
45(3)
2.4.4 Hydrogen bonds
48(1)
2.4.5 Comparison of bond strengths
49(1)
2.5 Equilibrium crystal structures
50(5)
2.6 Molecular layer structures
55(12)
2.6.1 Epitaxial growth modes
55(3)
2.6.2 Van der Waals epitaxy and quasiepitaxy
58(4)
2.6.3 Modeling and growth of ordered layers
62(4)
2.6.4 Dependence of strain on molecular size and shape
66(1)
2.7 Self-assembly
67(2)
2.8 Summing up
69(1)
Further reading
70(1)
Problems
70(1)
References
71(3)
3 Optical properties of organic semiconductors
74(97)
3.1 The electronic structure of molecules
75(1)
3.2 The Born-Oppenheimer approximation and the Franck-Condon principle
75(5)
3.3 Linear combination of atomic orbitals, hybridization, and the aufbau principle
80(7)
3.4 Improving accuracy: numerical models
87(4)
3.4.1 Ab initio approaches
88(1)
3.4.2 Semi-empirical approaches
89(2)
3.5 Transitions between states
91(12)
3.5.1 Fermi's Golden Rule
91(1)
3.5.2 Quantum mechanical selection rules
92(1)
3.5.3 Understanding molecular spectra
93(10)
3.6 Excitons
103(26)
3.6.1 Transition probabilities, oscillator strength, and the energy gap law
104(6)
3.6.2 Dimers
110(2)
3.6.3 Excimers and exciplexes
112(4)
3.6.4 Excited states in crystals
116(4)
3.6.5 Classification of excitons
120(2)
3.6.6 Charge transfer states
122(2)
3.6.7 Solvatochromism and dielectric effects
124(5)
3.7 Spin
129(17)
3.7.1 Spin-orbit coupling
130(3)
3.7.2 Spin-spin coupling
133(1)
3.7.3 Metal-ligand and ligand-centered interactions in organic-transition metal complexes
134(7)
3.7.4 Relative phosphorescent and fluorescent rates and efficiencies
141(2)
3.7.5 Delayed fluorescence
143(3)
3.8 Energy transfer
146(8)
3.8.1 Near field radiationless energy transfer: FRET
147(4)
3.8.2 Energy transfer in the contact zone: Dexter transfer by electron exchange
151(2)
3.8.3 Radiative energy transfer
153(1)
3.9 Exciton diffusion
154(5)
3.10 Exciton recombination and annihilation
159(3)
3.11 Summing up
162(1)
Further reading
163(1)
Problems
163(3)
References
166(5)
4 Charge transport in organic semiconductors
171(122)
4.1 From energy levels to energy bands
172(8)
4.1.1 Tight binding method for calculating energy bands
173(6)
4.1.2 Experimental dispersion relationships
179(1)
4.2 Charge transfer
180(4)
4.3 Charge transport
184(20)
4.3.1 Hopping in the presence of dynamic disorder
187(2)
4.3.2 Hopping in the presence of static disorder
189(1)
4.3.2.1 Miller-Abrahams electron transfer
189(1)
4.3.2.2 Marcus electron transfer
190(5)
4.3.2.3 Charge mobility in organic semiconductors with static disorder: the effective medium approximation
195(4)
4.3.2.4 Beyond the Einstein relation and the EMA
199(5)
4.4 Conduction in organic thin films
204(24)
4.4.1 Ohmic conduction and doping
204(8)
4.4.2 Space charge limited conduction
212(1)
4.4.2.1 Trap-free SCL conduction
212(3)
4.4.2.2 SCL conduction in the presence of traps
215(4)
4.4.3 Measuring conductivity and mobility
219(1)
4.4.3.1 Time of flight mobility
220(3)
4.4.3.2 Dark injection space charge limited current
223(1)
4.4.3.3 Charge extraction by linearly increasing voltage
224(3)
4.4.3.4 Hall effect mobility
227(1)
4.5 Charge recombination
228(8)
4.5.1 Direct LUMO-HOMO recombination
229(1)
4.5.2 Recombination via mid-gap states
230(2)
4.5.3 Auger recombination
232(1)
4.5.4 Langevin recombination
232(2)
4.5.5 Long range charge diffusion in organic thin films
234(2)
4.6 Injection from contacts
236(12)
4.6.1 The ideal Schottky barrier
236(4)
4.6.2 Barrier lowering and tunneling at metal-organic junctions
240(3)
4.6.3 Metal-organic junctions in the presence of traps
243(5)
4.7 Organic semiconductor junctions
248(32)
4.7.1 Organic homojunctions
248(4)
4.7.2 Excitonic heterojunctions
252(1)
4.7.2.1 Excitonic HJ fundamentals
253(4)
4.7.2.2 Ideal diode equation for current transport in a trap-free excitonic HJ
257(9)
4.7.2.3 Current-voltage characteristics in the presence of traps
266(4)
4.7.3 Organic-inorganic heterojunctions
270(1)
4.7.3.1 Conduction in organic-inorganic heterojunctions
271(1)
4.7.3.2 Current-voltage characteristics of an ideal OI-HJ
272(1)
4.7.3.3 Current-voltage characteristics of an OI-HJ in the presence of interface traps
273(6)
4.7.4 Universal ideal diode behavior
279(1)
4.8 Summing up
280(1)
Further reading
281(1)
Problems
281(4)
References
285(8)
Part II Applications
293(722)
5 Materials purity, growth, and patterning
295(72)
5.1 The organic semiconductor difference
296(1)
5.2 Effects of impurities on materials properties
297(2)
5.3 Materials purification
299(11)
5.3.1 Zone refining
299(4)
5.3.2 Thermal gradient sublimation
303(2)
5.3.3 Solution-based purification methods
305(3)
5.3.4 Ultracentrifugation
308(2)
5.4 Bulk crystal and thin film growth
310(23)
5.4.1 Bulk single crystal growth
310(6)
5.4.2 Thin film growth
316(1)
5.4.2.1 Vacuum thermal evaporation
316(5)
5.4.2.2 Organic molecular beam deposition
321(3)
5.4.2.3 Organic vapor phase deposition
324(6)
5.4.2.4 Film deposition from liquid solution
330(3)
5.5 Post-growth control of structure
333(4)
5.5.1 Thermal annealing
334(1)
5.5.2 Solvent annealing
335(2)
5.6 Film patterning
337(18)
5.6.1 Shadow mask patterning
337(2)
5.6.2 Photolithographic patterning
339(2)
5.6.3 Laser induced thermal imaging
341(1)
5.6.4 Nanoimprinting and stamping
341(4)
5.6.5 Inkjet printing
345(2)
5.6.6 Organic vapor jet printing
347(5)
5.6.7 Other patterning techniques
352(3)
5.7 Roll-to-roll production of organic electronics
355(3)
5.8 Packaging
358(2)
5.9 Summing up
360(1)
Further reading
361(1)
Problems
361(1)
References
362(5)
6 Organic light emitters
367(201)
6.1 OLED basics
368(5)
6.2 Design and characterization of electroluminescent devices
373(13)
6.2.1 Efficiency
373(1)
6.2.2 OLED architectures
373(3)
6.2.3 Quantifying OLED performance
376(1)
6.2.3.1 Radiometry and photometry: color perception and efficiency in OLED displays
376(2)
6.2.3.2 Chromaticity
378(3)
6.2.3.3 White light
381(2)
6.2.4 Measuring OLED performance
383(3)
6.3 Electroluminescent processes
386(53)
6.3.1 Spin statistics
387(6)
6.3.2 Fluorescent OLEDs
393(1)
6.3.2.1 Exciton diffusion and confinement in multilayer small molecule OLEDs
394(2)
6.3.2.2 Energy transfer and luminescent layer doping in fluorescent OLEDs
396(3)
6.3.2.3 Small molecule fluorescent dopants and hosts
399(4)
6.3.2.4 Fluorescent polymer OLEDs
403(4)
6.3.2.5 Materials for fluorescent polymer OLEDs
407(5)
6.3.3 Phosphorescent OLEDs (PHOLEDs)
412(1)
6.3.3.1 Small molecule PHOLED architectures
412(6)
6.3.3.2 Polymer PHOLEDs
418(3)
6.3.3.3 Triplet emitting complexes
421(1)
6.3.4 Thermally assisted delayed fluorescence
421(10)
6.3.5 Exciton annihilation and management in OLEDs
431(1)
6.3.5.1 Exciton annihilation, triplet fusion, and singlet fission in fluorescent OLEDs
432(3)
6.3.5.2 Reducing efficiency roll-off via triplet management
435(1)
6.3.5.3 Efficiency roll-off in PHOLEDs
436(3)
6.4 OLED displays
439(9)
6.4.1 Top emitting OLEDs for displays
442(4)
6.4.2 Full color displays and pixelation
446(2)
6.5 OLED lighting and lighting devices
448(24)
6.5.1 Multicolor blended EMLs
450(6)
6.5.2 Hybrid fluorescent/phosphorescent WOLEDs
456(3)
6.5.3 WOLEDs based on excimer emission
459(6)
6.5.4 WOLEDs employing TADF emission
465(1)
6.5.5 Stacked and striped phosphorescent WOLEDs
466(6)
6.6 Light outcoupling
472(30)
6.6.1 Theory of outcoupling
473(6)
6.6.2 Substrate mode outcoupling
479(3)
6.6.3 Waveguide mode outcoupling
482(9)
6.6.4 Surface plasmon polariton mode outcoupling
491(3)
6.6.5 Outcoupling via molecular alignment
494(7)
6.6.6 Summary and prospects
501(1)
6.7 Reliability of organic light emitters
502(33)
6.7.1 Quantifying OLED long term performance and reliability
502(4)
6.7.2 Degradation due to contacts and interfaces
506(3)
6.7.3 Degradation due to thermal effects and chemical decomposition
509(8)
6.7.4 Lifetime of blue PHOLEDs: energy-driven degradation
517(15)
6.7.5 OLED lifetime on flexible plastic substrates
532(3)
6.8 Organic semiconductor lasers
535(15)
6.8.1 Theory of lasing in optically pumped OSLs
540(3)
6.8.2 Distinguishing characteristics of OSLs
543(5)
6.8.3 Achieving electrically pumped OSLs
548(2)
6.9 Summing up
550(1)
Further reading
551(1)
Problems
552(3)
References
555(13)
7 Organic light detectors
568(235)
7.1 Operating principles of organic photodetectors
569(29)
7.1.1 Photoconductivity and photoconductors
569(1)
7.1.1.1 General considerations
569(1)
7.1.1.2 Gain and bandwidth
570(1)
7.1.1.3 Photogeneration in excitonic photoconductors
571(2)
7.1.1.4 Quantum efficiency and responsivity
573(1)
7.1.1.5 Noise, detectivity, and dynamic range
574(2)
7.1.2 Photodiodes and solar cells
576(2)
7.1.2.1 Photodiode and solar cell architectures and energetics
578(4)
7.1.2.2 j--V characteristics in the dark and under illumination
582(2)
7.1.2.3 Active region morphologies
584(2)
7.1.2.4 Bandwidth
586(2)
7.1.2.5 Noise and dynamic range
588(1)
7.1.3 Comparison of photoconductors and photodiodes
588(1)
7.1.4 Modeling efficiency: optical and charge generation in OPDs and OPVs
588(6)
7.1.5 Modeling efficiency: dependence on film morphology
594(4)
7.2 Organic photoconductors and photodiodes: properties and examples
598(26)
7.2.1 Photoconductors
598(5)
7.2.2 Photodiodes
603(1)
7.2.2.1 Photodiode materials
603(5)
7.2.2.2 High bandwidth OPDs
608(2)
7.2.2.3 OPDs based on nanotubes and quantum dots
610(5)
7.2.2.4 Photodiode applications
615(9)
7.3 Organic solar cells
624(23)
7.3.1 Solar cell basics
626(4)
7.3.2 Thermodynamic limits to OPV efficiency
630(8)
7.3.3 Measuring solar cell efficiency
638(9)
7.4 Architectures, morphologies, and materials for OPVs
647(78)
7.4.1 Architectural elements of high performance OPVs
650(1)
7.4.1.1 Anode buffers
650(3)
7.4.1.2 Active regions: cascade and ternary blend OPVs
653(14)
7.4.1.3 Exciton blocking layers
667(7)
7.4.2 OPV transparency and flexibility, and the role of contacts
674(9)
7.4.3 Bulk and mixed heterojunction morphologies
683(1)
7.4.3.1 Dependence of efficiency on morphology: theoretical perspectives
683(5)
7.4.3.2 Optimizing morphology during deposition and processing
688(9)
7.4.4 Materials optimized for use in OPVs
697(2)
7.4.4.1 Donors
699(12)
7.4.4.2 Non-fullerene acceptors
711(13)
7.4.4.3 Materials used in non-fullerene ternary OPVs
724(1)
7.5 Multijunction cells
725(13)
7.5.1 Design principles of optimized multijunction OPVs
726(3)
7.5.2 Charge recombination zones
729(2)
7.5.3 Example multijunction OPV structures and performances
731(7)
7.6 Singlet fission
738(5)
7.6.1 Fully organic singlet fission OPVs
741(1)
7.6.2 Hybrid organic/QD singlet fission OPVs
742(1)
7.7 Light trapping and concentration
743(14)
7.7.1 Light trapping using reflective apertures
745(2)
7.7.2 V-traps
747(2)
7.7.3 Nanoscale dielectric scatterers
749(1)
7.7.4 Scattering via gratings and textured surfaces
750(4)
7.7.5 Luminescent solar concentrators
754(3)
7.8 Reliability of organic photovoltaics
757(20)
7.8.1 Materials and morphological degradation
765(4)
7.8.2 Contacts and other interfaces
769(4)
7.8.3 Encapsulation
773(4)
7.9 Scaling up to modules
777(7)
7.10 Summing up
784(1)
Further reading
785(1)
Problems
786(2)
References
788(15)
8 Organic thin film transistors
803(115)
8.1 Thin film transistor basics
804(2)
8.2 A brief history of OTFTs
806(3)
8.3 Operating principles and definitions
809(21)
8.3.1 Metal-insulator-semiconductor contacts
810(3)
8.3.2 OTFT operation
813(8)
8.3.3 Frequency response
821(5)
8.3.4 Transistor noise
826(4)
8.4 Alternative thin film transistor architectures
830(14)
8.4.1 Dual gate OTFTs
830(3)
8.4.2 Doped channel OTFTs
833(2)
8.4.3 Vertical organic field effect transistors
835(4)
8.4.4 Complementary logic and ambipolar transistors
839(4)
8.4.5 Split gate transistors
843(1)
8.5 Phototransistors
844(6)
8.6 OTFT materials
850(19)
8.6.1 Self-assembled monolayers
854(3)
8.6.2 Small molecules for p-channel transistors
857(4)
8.6.3 Small molecules for n-channel transistors
861(3)
8.6.4 Polymers for p-channel transistors
864(1)
8.6.5 Polymers for n-channel transistors
864(2)
8.6.6 Materials for ambipolar transistors
866(3)
8.7 Material deposition and transistor patterning
869(9)
8.7.1 Molecular alignment via dip coating and associated techniques
869(3)
8.7.2 Molecular orientation on surface-modified substrates
872(3)
8.7.3 Direct printing of OTFT contacts
875(3)
8.8 Reliability of organic transistors and circuits
878(12)
8.8.1 Tracking and understanding threshold voltage shifts
879(3)
8.8.2 Effects of water on transistor stability
882(5)
8.8.3 Other sources of instabilities in OTFT performance
887(3)
8.8.4 Achieving reliable OTFTs
890(1)
8.9 Organic transistor circuit applications
890(15)
8.9.1 Flexible display backplanes
892(1)
8.9.2 Sensors and sensor arrays
893(6)
8.9.3 Ultrathin, stretchable, and biocompatible electronics
899(6)
8.10 Summing up
905(1)
Further reading
906(1)
Problems
906(2)
References
908(10)
9 Expect the unexpected: more possibilities for organic electronics
918(97)
9.1 Light emitting electrochemical cells
919(4)
9.2 Microcavity organic exciton polaritons
923(18)
9.2.1 Cavity designs
925(3)
9.2.2 Optically pumped organic polaritons
928(3)
9.2.3 Hybrid organic/inorganic semiconductor polaritons
931(1)
9.2.4 Polariton lasers and Bose-Einstein condensation
932(5)
9.2.5 Ultrastrong coupling and polaritonic OLEDs and OPDs
937(4)
9.3 Organic thermoelectricity
941(9)
9.3.1 Organic thermoelectric module architectures
944(3)
9.3.2 Example devices
947(3)
9.4 Memories
950(23)
9.4.1 Memory arrays
952(1)
9.4.2 WORM memories
953(2)
9.4.3 Reversible resistive memories
955(3)
9.4.4 Ferroelectric capacitors and diodes
958(3)
9.4.5 Transistor memories
961(2)
9.4.5.1 Interface charge trapping
963(3)
9.4.5.2 Floating gate and metal NP charge storage
966(3)
9.4.5.3 Ferroelectric memory transistors
969(4)
9.5 Organic/two-dimensional semiconductor heterojunctions
973(15)
9.5.1 Electronic characteristics of transition metal dichalcogenides
974(6)
9.5.2 Charge transfer at organic/2D semiconductor heterojunctions
980(2)
9.5.3 Two-dimensional organic/inorganic heterojunction devices
982(6)
9.6 Single molecule electronics
988(19)
9.6.1 Fabricating and characterizing single molecule devices
994(7)
9.6.2 Unique properties of single molecule devices
1001(6)
9.7 Summing up
1007(1)
Further reading
1007(1)
Problems
1008(1)
References
1009(6)
Appendixes
1015(22)
Appendix A Glossary of frequently used and common abbreviations
1016(5)
Appendix B Identification of chemical names
1021(10)
Appendix C Measuring ionization potentials and electron affinities
1031(6)
General index 1037(8)
Chemical name index 1045
Stephen R. Forrest is Peter A. Franken Distinguished University Professor at the University of Michigan, Ann Arbor. He previously taught at Princeton University and the University of Southern California. Prof. Forrest has received a number of awards for his work, including the Thomas Alva Edison Award for innovations in organic LEDs, the MRS Medal, the IEEE/LEOS William Streifer Scientific Achievement Award, the Jan Rajchman Prize from the Society for Information Display, the IEEE Daniel Nobel Award, and the IEEE Jun-Ichi Nishizawa Medal. He holds an honorary doctorate at the Technion-Israel Institute of Technology, and is a member of the US National Academy of Engineering, the National Academy of Sciences, the American Academy of Arts and Sciences, and the National Academy of Inventors. He is co-founder of Sensors Unlimited, NanoFlex Power Corp., Universal Display Corp. and Apogee Photonics, Inc.