Muutke küpsiste eelistusi

E-raamat: Organic Field-Effect Transistors

Edited by (University of Georgia, Athens, GA, USA), Edited by (Stanford University, California, USA)
  • Formaat - PDF+DRM
  • Hind: 152,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The development of organic thin film transistors (OTFTs) has led to applications such as active matrix flat-panel displays, radio frequency identification cards, and a range of sensors. Along with the ability to be deposited on substrates at low temperatures, they perform at levels comparable to that of silicon thin film transistors. This collection of papers on the theories behind the applications and the applications themselves includes material on aspects of charge transport in organic semiconductors from a molecular perspective, charge transport in oligomers, charge transport physics of solution-processed organic field-effect transistors, selection and design of dielectric materials, grazing incidence x-ray diffraction, scanning probe techniques, solution deposition of oligomers and polymers, inkjet printed OTFTs, soft lithography, vacuum evaporated thin films and a range of applications, including those for radio frequency identification tags, organic transistor chemical sensors, flexible and large area e-skins and ORFTs for flat panel displays. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)

The remarkable development of organic thin film transistors (OTFTs) has led to their emerging use in active matrix flat-panel displays, radio frequency identification cards, and sensors. Exploring one class of OTFTs, Organic Field-Effect Transistors provides a comprehensive, multidisciplinary survey of the present theory, charge transport studies, synthetic methodology, materials characterization, and current applications of organic field-effect transistors (OFETs).

Covering various aspects of OFETs, the book begins with a theoretical description of charge transport in organic semiconductors at the molecular level. It then discusses the current understanding of charge transport in single-crystal devices, small molecules and oligomers, conjugated polymer devices, and charge injection issues in organic transistors. After describing the design rationales and synthetic methodologies used for organic semiconductors and dielectric materials, the book provides an overview of a variety of characterization techniques used to probe interfacial ordering, microstructure, molecular packing, and orientation crucial to device performance. It also describes the different processing techniques for molecules deposited by vacuum and solution, followed by current technological examples that employ OTFTs in their operation.

Featuring respected contributors from around the world, this thorough, up-to-date volume presents both the theory behind OFETs and the latest applications of this promising technology.

Arvustused

". . . a useful addition to university libraries and may also be of interest to scientists who are working on organic semiconductor electronics in industry . . . a valuable yellow pages for graduate students who are just entering the field . . . I highly recommend this book."

Alejandro L. Briseno, University of Washington, in Materials Today, June 2008, Vol. 11 No. 6

Section 1.1 Theoretical Aspects of Charge Transport in Organic Semiconductors A Molecular Perspective
1(26)
Demetrio A. da Silva Filho
Yoann Olivier
Veaceslav Coropceanu
Jean-Luc Bredas
Jerome Cornil
Introduction
1(2)
A Primer on Electron-Transfer Theory
3(2)
Electron-Vibration Coupling and Reorganization Energy
5(5)
Intramolecular Reorganization Energy
5(3)
Intramolecular Reorganization Energy of Oligoacenes
8(2)
Electronic Coupling
10(6)
Influence of Intermolecular Separation
12(1)
Influence of Long- or Short-Axis Displacements
13(3)
From Molecular Parameters to Carrier Mobilities
16(6)
Influence of the Electric Field
17(1)
Influence of the Reorganization Energy
18(1)
Influence of Intermolecular Distance
18(2)
Influence of Molecular Translations
20(1)
Introduction of a Gaussian Disorder
21(1)
Concluding Remarks
22(5)
References
22(5)
Section 2.1 Charge Carrier Transport in Single-Crystal Organic Field-Effect Transistors
27(46)
Vitaly Podzorov
Introduction: The Field Effect in Small-Molecule Organic Semiconductors
28(2)
Fabrication of Single-Crystal OFETs
30(8)
Charge Transport on the Surface of Organic Single Crystals
38(21)
Basic FET Operation
38(8)
The Multiple Trap-and-Release Model
46(2)
Anisotropy of the Mobility
48(2)
Longitudinal and Hall Conductivity in Rubrene OFETs
50(4)
Comparison with the Holstein--Peierls Model and Transport Measurements in the Bulk of Organic Crystals
54(1)
Tuning the Intermolecular Distance
55(1)
Surface versus Bulk Transport
56(2)
Photoinduced Processes in Single-Crystal OFETs
58(1)
Defects at the Surface of Organic Crystals
59(6)
Bulk and Surface Electronic Defects in Organic Crystals
61(2)
Density of Defects in Single-Crystal OFETs
63(1)
Single-Crystal OFETs as Tools to Study Surface Defects
64(1)
Conclusion
65(8)
Acknowledgments
67(1)
References
67(6)
Section 2.2 Charge Transport in Oligomers
73(30)
Gilles Horowitz
Introduction
73(2)
Operating Mode of the Organic Thin-Film Transistor
75(2)
Charge Transport in Conjugated Oligomers
77(9)
Band Transport
78(2)
Polaron Transport
80(5)
Polarization in Molecular Crystals
80(2)
Molecular Polaron
82(1)
Marcus Model
83(2)
Hopping Transport
85(1)
Trap Limited Transport in Organic Transistors
86(3)
Parameter Extraction
89(8)
Threshold Voltage
91(1)
Contact Resistance
91(4)
Contact Resistance Extraction
91(3)
Origin of Contact Resistance
94(1)
Mobility Degradation
95(2)
Concluding Remarks
97(6)
Acknowledgments
97(2)
References
99(4)
Section 2.3 Charge Transport Physics of Solution-Processed Organic Field-Effect Transistors
103(36)
Henning Sirringhaus
Introduction
103(3)
Solution-Processable p-Type Organic Semiconductors
106(5)
Conjugated Polymers
106(4)
Solution-Processable Small Molecules
110(1)
Solution-Processable n-Type Organic Semiconductors
111(1)
Gate Dielectrics
112(3)
Charge Transport Physics
115(9)
Charge Injection Physics
124(3)
Defect States and Device Degradation Mechanisms
127(3)
Outlook
130(9)
References
130(9)
Section 2.4 Contact Effects in Organic Field-Effect Transistors
139(20)
Matthew J. Panzer
C. Daniel Frisbie
Introduction
139(1)
Definition of an Ohmic Contact
140(1)
Origins of Contact Resistance
140(8)
Electronic Structure and Potential Barriers at Metal--Organic Interfaces
140(2)
Charge Transport across Metal--Organic Interfaces
142(3)
Influence of Channel Dimensions
145(1)
Influence of Device Architecture
146(2)
Measuring Contact Resistance
148(6)
Extrapolation of Device Resistance to Zero Channel Length
148(1)
Gated Four-Probe Measurements
149(1)
Kelvin Probe Force Microscopy
150(1)
Measured Contact Resistance Values
151(3)
Contact Engineering
154(5)
Chemical Modifications
154(1)
Ambipolar and Light-Emitting OFETs
155(1)
Channel Dimensions: How Small?
155(4)
References
155(4)
Section 3.1 Design, Synthesis, and Transistor Performance of Organic Semiconductors
159(70)
Abhijit Basu Mallik
Jason Locklin
Stefan C. B. Mannsfeld
Colin Reese
Mark E. Roberts
Michelle L. Senatore
Hong Zi
Zhenan Bao
Introduction
160(1)
p-Channel Organic Semiconductors
161(30)
Acenes and Non-Thiophene-Based Semiconductor
162(15)
Linear Fused Rings
162(4)
Fused and Extended Heteroarenes
166(7)
Star-Shaped Oligomers
173(1)
Oligoaryls
173(2)
Macrocyclics
175(2)
Thiophene-Based Oligomers
177(6)
Polymers
183(5)
Solution Processable Semiconductors: The ``Precursor Method''
188(3)
Precusor Polymers and Small Molecules
189(2)
Polydiacetylene
191(1)
N-Channel Organic Semiconductors
191(11)
Fullerenes and Fullerene Derivatives
192(1)
Phthalocyanines
192(2)
Naphthalene, Diimide Derivatives
194(1)
Perylene Diimide Derivatives
195(2)
Quinoid Systems
197(1)
Thiophene Based n-Channel Oligomers
197(3)
Trifluoromethylphenyl-Based Oligomers
200(1)
Polymeric Systems
201(1)
Outlook and Conclusions
202(1)
Table of Mobilities
203(26)
References
214(15)
Section 3.2 Dielectric Materials: Selection and Design
229(24)
Ashok Maliakal
Introduction
229(2)
Fundamentals and Figures of Merit
231(4)
Factors Affecting the Dielectric Constant
232(1)
Thickness
233(1)
Dielectric Roughness
233(1)
Film Morphology
234(1)
Importance of Interface between Dielectric and Semiconductor
234(1)
Processing
234(1)
Reliability
235(1)
Major Classes of Dielectric Materials
235(5)
Inorganic Dielectrics
235(2)
Polymer Dielectrics
237(3)
Alternative Gate Dielectric Strategies
240(8)
Gate Dielectrics through Anodization of Thin-Metal Films
240(1)
Surface Treatment of Inorganic Materials
241(1)
Self-Assembled Monolayers/Multilayers
242(3)
Nanocomposite and Nanostructured Dielectrics
245(3)
Summary and Conclusions
248(5)
References
248(5)
Section 4.1 Grazing Incidence X-Ray Diffraction (GIXD)
253(24)
Tae Joo Shin
Hoichang Yang
Introduction
253(5)
Two Possible Geometrical Setups
255(2)
Bragg Peaks
257(1)
Bragg Rod Profile
257(1)
Interpretation of the Diffraction Data
258(6)
Calculation of Structure Factor
261(2)
Calculation of Angle between a- and b-Axes
263(1)
Examples
264(8)
Poly(3-hexyl thiophene) (P3HT)
264(5)
Pentacene
269(2)
Oligo Acene-Thiophene
271(1)
Concluding Remarks
272(5)
References
273(4)
Section 4.2 Near-Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy
277(24)
Dean M. DeLongchamp
Eric K. Lin
Daniel A. Fischer
Introduction
277(7)
The Importance of Structure
277(3)
NEXAFS Background
280(2)
NEXAFS for Organic Electronics
282(2)
Experimental Considerations
284(3)
Data Analysis for Orientation
287(2)
Examples of Applied NEXAFS Spectroscopy
289(6)
Pentacene
289(3)
Poly(3-Hexyl Thiophene)
292(2)
NEXAFS of Oriented Liquid Crystalline Polymers
294(1)
NEXAFS for Molecular Electronics
295(1)
Future Horizons for NEXAFS Spectroscopy
295(6)
References
296(5)
Section 4.3 Scanning Probe Techniques
301(40)
Hoichang Yang
Introduction
301(2)
Atomic Force Microscopy (AFM)
303(7)
AFM Tip Shape
304(1)
Basic Principle of Intermediate Contact Mode (Tapping Mode)
305(1)
Applications
306(4)
Electric Force Microscopy (EFM)
310(6)
Basic Principle
311(2)
Applications
313(3)
Kelvin Probe Force Microscopy (KFM)
316(3)
Conducting Probe AFM (CP-AFM or C-AFM)
319(22)
Applications of CP-AFM
321(20)
References
331(10)
Section 5.1 Vacuum Evaporated Thin Films
341(30)
Alex C. Mayer
Jack M. Blakely
George G. Malliards
Introduction
341(5)
Film Growth Technology Considerations
342(1)
Describing Film Growth: Thermodynamics and Kinetics
343(2)
Inorganics versus Organics
345(1)
Thin Film Characterization Techniques
346(3)
Scanning Probe Techniques
347(1)
X-Ray Scattering
348(1)
Electron-Based Techniques
348(1)
Organic Film Growth Kinetics
349(15)
Thermodynamic Driving Force
351(1)
Rate Equations: Microscopic
352(11)
Rate Equation Elements
353(2)
Dynamic Island Size Distribution
355(3)
Beyond the First Layer: Birth--Death Models
358(5)
Rate Equations: Macroscopic
363(1)
Effects of the Substrate
364(1)
Effect of Surface Energy
364(1)
Effect of Surface Roughness
364(1)
Outlook
365(6)
References
366(5)
Section 5.2 Solution Deposition of Polymers
371(32)
Hoichang Yang
Introduction
371(3)
Solution Casting and Spin-Coating to Form Self-Assembled Polymers
374(18)
Molecular Structure
374(8)
Effect of Solvent
382(5)
Processing Condition
387(5)
Concluding Remarks
392(11)
References
395(8)
Section 5.3 Solution Deposition of Oligomers
403(16)
Howard E. Katz
Chad Landis
Introduction
403(1)
Conjugated Oligomers
404(5)
Fused Ring Compounds
409(5)
Conclusion and Future Prospects
414(5)
References
414(5)
Section 5.4 Inkjet Printed Organic Thin Film Transistors
419(14)
Ana Claudia Arias
Introduction
419(1)
Subtractive Methods --- Printing Electrodes
420(2)
Additive Methods --- Printing Semiconductors and Encapsulation Layers
422(5)
Display Backplane Fabrication
427(6)
References
431(2)
Section 5.5 Soft Lithography for Fabricating Organic Thin-Film Transistors
433(74)
Kimberly C. Dickey
Kwang Seok Lee
Yueh-Lin Loo
Typical Device Structures and Conventional Fabrication Techniques
433(2)
Stamps for Soft Lithography
435(3)
Microcontact Printing (μCP)
438(9)
Selective Etching
439(2)
Selective Electroless Plating
441(2)
Selective Chemical or Electrochemical Polymerization
443(1)
Stamp-and-Spin-Cast
444(1)
Other Microcontact Printing Derivatives
445(2)
Nanotransfer Printing (nTP)
447(11)
Soft-Contact Lamination (ScL)
458(8)
Cold Welding
466(2)
Metal Transfer Printing
468(1)
Hot Lift-Off
469(1)
Micromolding in Capillaries (MIMIC)
469(4)
Soft-Contact Optical Lithography
473(2)
Laser Thermal Transfer Printing
475(1)
Imprint Lithography
475(14)
References
483(6)
Section 6.1 Radio Frequency Identification Tags
489(1)
Vivek Subramanian
Introduction
489(1)
An Overview of RFID Standards and Classifications
490(1)
135 kHz RFID
490(1)
13.56 MHz RFID
491(1)
900 MHz and 2.4 GHz RFID
491(1)
Radio Frequency Identification Using Silicon: A Review
491(1)
All-Printed RFID Tags: Topology and Architecture Framework
492(8)
Antenna Stage
493(2)
Rectifier/Power Supply and Clamp
495(2)
Digital Section and Modulation Stage
497(3)
An Archetypal First Organic RFID Tag
500(1)
Implications of Tag Architecture on Device Considerations
501(3)
Transistor Performance and Structural Implications
501(2)
Circuit Issues
503(1)
Conclusions
504(3)
References
504(3)
Section 6.2 Organic Transistor Chemical Sensors
507(22)
Luisa Torsi
M. C. Tanese
Brian Crone
Liang Wang
Ananth Dodabalapur
Introduction
507(1)
Chemical Sensors: An Overview
508(3)
Organic Thin-Film Transistor Sensors
511(13)
Device Structure
511(1)
Multiparametric OTFT Sensors
512(3)
Interface-Dependent OTFT Responses
515(1)
Gate-Induced Response Repeatibility and Enhancement
516(5)
Selectivity of an OTFT
521(1)
Scaling Behavior of Sensing Responses
522(2)
Applications
524(5)
References
526(3)
Section 6.3 Flexible, Large-Area e-Skins
529(22)
Takao Someya
Takayasu Sakurai
Tsuyoshi Sekitani
Introduction
529(1)
Flexible Pressure Sensors
530(3)
Device Manufacturing
531(2)
Device Performance
533(1)
Integrated Circuits
533(2)
Stretchable e-Skins
535(5)
Device Manufacturing
536(1)
Device Performance
537(3)
Flexible Thermal Sensors
540(4)
Device Manufacturing
540(1)
Device Performance
540(4)
Discussion
544(1)
Bending Tests
544(3)
Issues and Future Prospects
547(1)
Summary
548(3)
References
549(2)
Section 6.4 Organic Thin-Film Transistors for Flat-Panel Displays
551(44)
Michael G. Kane
Introduction
552(1)
Active Matrix Displays
552(1)
Organic Electronics for Displays
552(1)
Important Organic TFT Parameters for Display Applications
553(11)
Field-Effect Mobility
553(2)
Threshold Voltage
555(1)
Subthreshold Swing
556(2)
Leakage Currents
558(1)
Capacitances
559(1)
Contact Resistance
560(1)
Bias-Stress Instability and Hysteresis
561(2)
Light Sensitivity
563(1)
TFT Nonuniformity
564(1)
Display Technologies
564(25)
Liquid-Crystal and Electrophoretic Displays
564(13)
Introduction
564(3)
Electro-Optic Behavior of Twisted-Nematic Liquid Crystals
567(2)
Electro-Optic Behavior of Electrophoretic Materials
569(1)
Liquid-Crystal and Electrophoretic Display Architecture
570(7)
Active Matrix OLED Displays
577(12)
Introduction
577(1)
Electro-Optic Behavior of Organic Light-Emitting Diodes
578(2)
OLED Display Architectures
580(9)
Using Organic TFTs for Integrated Drivers
589(2)
Conclusions
591(4)
References
591(4)
Index 595


Stanford University, California, USA University of Georgia, Athens, GA, USA