Muutke küpsiste eelistusi

E-raamat: Orthogonal Polynomials and Painleve Equations

(Katholieke Universiteit Leuven, Belgium)
  • Formaat - PDF+DRM
  • Hind: 45,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There are a number of intriguing connections between Painlevé equations and orthogonal polynomials, and this book is one of the first to provide an introduction to these. Researchers in integrable systems and non-linear equations will find the many explicit examples where Painlevé equations appear in mathematical analysis very useful. Those interested in the asymptotic behavior of orthogonal polynomials will also find the description of Painlevé transcendants and their use for local analysis near certain critical points helpful to their work. Rational solutions and special function solutions of Painlevé equations are worked out in detail, with a survey of recent results and an outline of their close relationship with orthogonal polynomials. Exercises throughout the book help the reader to get to grips with the material. The author is a leading authority on orthogonal polynomials, giving this work a unique perspective on Painlevé equations.

Muu info

A leading authority on orthogonal polynomials details their relationships with Painlevé equations with clear proofs, examples, and exercises.
Preface xi
1 Introduction
1(12)
1.1 Orthogonal polynomials on the real line
1(7)
1.1.1 Pearson equation and semi-classical orthogonal polynomials
4(4)
1.2 Painleve equations
8(5)
1.2.1 The six Painleve differential equations
8(1)
1.2.2 Discrete Painleve equations
9(4)
2 Freud weights and discrete Painleve I
13(14)
2.1 The Freud weight w(x) = e-x+tx2
13(3)
2.2 Asymptotic behavior of the recurrence coefficients
16(1)
2.3 Unicity of the positive solution of d-PI with xo = 0
17(4)
2.4 The Langmuir lattice
21(2)
2.5 Painleve IV
23(1)
2.6 Orthogonal polynomials on a cross
24(3)
3 Discrete Painleve II
27(23)
3.1 Orthogonal polynomials on the unit circle
27(7)
3.1.1 The weight w(θ) = et cosθ
28(3)
3.1.2 The Ablowitz--Ladik lattice
31(1)
3.1.3 Painleve V and III
32(2)
3.2 Discrete orthogonal polynomials
34(12)
3.2.1 Generalized Charlier polynomials
36(7)
3.2.2 The Toda lattice
43(1)
3.2.3 Painleve V and III
44(2)
3.3 Unicity of solutions for d-PII
46(4)
4 Ladder operators
50(14)
4.1 Orthogonal polynomials with exponential weights
50(3)
4.2 Riemann-Hilbert problem for orthogonal polynomials
53(2)
4.3 Proof of the ladder operators
55(2)
4.4 A modification of the Laguerre polynomials
57(3)
4.5 Ladder operators for orthogonal polynomials on the linear lattice
60(1)
4.6 Ladder operators for orthogonal polynomials on a q-lattice
61(3)
5 Other semi-classical orthogonal polynomials
64(19)
5.1 Semi-classical extensions of Laguerre polynomials
64(1)
5.2 Semi-classical extensions of Jacobi polynomials
65(1)
5.3 Semi-classical extensions of Meixner polynomials
66(4)
5.4 Semi-classical extensions of Stieltjes--Wigert and q-Laguerre polynomials
70(4)
5.5 Semi-classical bi-orthogonal polynomials on the unit circle
74(5)
5.6 Semi-classical extensions of Askey--Wilson polynomials
79(4)
6 Special solutions of Painleve equations
83(32)
6.1 Rational solutions
83(20)
6.1.1 Painleve II
83(5)
6.1.2 Painleve III
88(3)
6.1.3 Painleve IV
91(7)
6.1.4 Painleve V
98(4)
6.1.5 Painleve VI
102(1)
6.2 Special function solutions
103(12)
6.2.1 Painleve II
103(3)
6.2.2 Painleve III
106(2)
6.2.3 Painleve IV
108(1)
6.2.4 Painleve V
109(3)
6.2.5 Painleve VI
112(3)
7 Asymptotic behavior of orthogonal polynomials near critical points
115(32)
7.1 Painleve I
119(10)
7.2 Painleve II
129(7)
7.3 Painleve III
136(1)
7.4 Painleve IV
137(4)
7.5 Painleve V
141(5)
7.6 Painleve VI
146(1)
Appendix Solutions to the exercises 147(20)
References 167(10)
Index 177
Walter Van Assche is a professor of mathematics at the Katholieke Universiteit Leuven, Belgium, and presently the Chair of the SIAM Activity Group on Orthogonal Polynomials and Special Functions (OPSF). He is an expert in orthogonal polynomials, special functions, asymptotics, approximation, and recurrence relations.