Muutke küpsiste eelistusi

E-raamat: Oscillation-Based Test in Mixed-Signal Circuits

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Oscillation-Based Test in Mixed-Signal Circuits presents the development and experimental validation of the structural test strategy called Oscillation-Based Test - OBT in short. The results here presented allow to assert, not only from a theoretical point of view, but also based on a wide experimental support, that OBT is an efficient defect-oriented test solution, complementing the existing functional test techniques for mixed-signal circuits.

This book presents the development and experimental validation of the structural test strategy called Oscillation-Based Test - OBT in short. The results presented here assert, not only from a theoretical point of view, but also based on a wide experimental support, that OBT is an efficient defect-oriented test solution, complementing the existing functional test techniques for mixed-signal circuits.
Preface xiii
Oscillation-Based Test Methodology
1(48)
Linking Oscillation with Testing
1(9)
Point of Origin: Early OBT
1(5)
Evolution of the OBT concept
6(2)
Critical analysis of the OBT concept
8(2)
The OBT Oscillator
10(28)
Direct approach: classical linear oscillator
11(13)
Second approach: oscillator using non-linear methods
24(7)
Proposed approach: amplitude controlled by limitation
31(7)
The OBT Concept Revisited: Proposal for Robust OBT
38(8)
The oscillator
38(1)
General circuit modifications
39(2)
Start-up problem
41(1)
Requiring more test information
41(1)
Characterizing the test oscillator
42(1)
Characterizing the test interpretation
43(1)
The test process
44(2)
Summarizing the New OBT Concept
46(3)
Mathematical Review of Non-Linear Oscillators
49(48)
Framework
50(1)
The Describing Function Method
51(12)
A General Describing-Function for Piecewise-linear Elements
55(3)
On the use of the DF method in oscillators
58(3)
Convergent Equilibrium: Steady Oscillation Mode
61(2)
Applying the DF Approach
63(12)
Determining the oscillation parameters
63(4)
Describing-Function limitations
67(8)
Error Bound Calculation for the DF Approach
75(19)
First proposed method
75(2)
Example #1: Oscillator with bandpass functions of different Q
77(5)
Example #2: (Example of Fig. 2.19)
82(2)
A graphical method for a particular type of nonlinearities
84(1)
Proposed Strategy
84(6)
Example #3: Non oscillatory solution
90(2)
Example #4: Existence of an oscillatory solution
92(2)
Summary
94(3)
OBT Methodology for Discrete-Time Filters
97(60)
Feasible OBT Strategy in Discrete-time Filters
97(20)
Oscillation solutions for a generic filter
99(6)
Oscillation solutions for the biquadratic case
105(2)
Type a: Delay-free loop oscillator (n=0)
107(1)
Type b: Single-delay loop oscillator (n=1)
108(1)
Type c: Two-delay loop oscillator (n=2)
109(1)
A simple Non-Linear Block
110(1)
Oscillation Conditions
111(6)
Application to a Particular Biquad Structure
117(20)
Properties of the FL-Biquad
119(1)
The E- and F-circuits
119(1)
Pole placement
120(2)
Zero Placement
122(3)
Design Equations
125(1)
Applying the OBT technique to the FL-biquad
125(6)
Regions of interest in the plane b0, b1
131(5)
OBT routine
136(1)
A Generic OBT Oscillator
137(18)
Conclusions extracted by the simplified results
139(2)
Conclusions extracted by the no-simplified results
141(1)
Selected Generic Oscillator: Case BP10
142(1)
Guidelines to implement a generic OBT scheme
142(1)
Conclusions related to K, b0 and b1
142(1)
Conclusions related to the zero placement formulas (I,J,G,H)
143(8)
Applying the Generic OBT scheme
151(2)
Designing the oscillator
153(2)
Summary
155(2)
OBT Methodology for Discrete-Time ΣΔ Modulators
157(48)
OBT Concept in Low-pass Discrete-time ΣΔ Modulators
158(16)
Basic approach: forcing oscillations using local extra feedback loops
158(7)
Practical OBT scheme in low-pass 2nd-order ΣΔ modulators
165(2)
Fault Analysis
167(1)
Fault Detection
168(3)
Extension to High-order Architectures
171(3)
OBT Concept in Bandpass Discrete-time ΣΔ Modulators
174(18)
Background
174(2)
Basic OBT approach: forcing oscillations around the notch frequency
176(5)
Practical OBT scheme: downsizing the oscillation frequency
181(3)
Structural Test and Fault Analysis
184(3)
Fault Detection
187(4)
Extension to Higher order structures
191(1)
Practical OBT Scheme for any Type of Modulators
192(10)
Theoretical Normalized Oscillation Parameters
194(6)
Fault Coverage considerations
200(2)
Summary
202(3)
OBT Implementation in Discrete-Time Filters
205(28)
A Specific Circuit
205(4)
Some Practical Examples
209(5)
Fault Coverage Considerations
214(3)
Oscillator Modelling Accuracy
217(2)
DTMF Biquad Validation
219(12)
Fault coverage considerations
223(1)
Test Quality
223(8)
Summary
231(2)
Practical Regards for Obt-Obist Implementation
233(64)
Demonstrator Macrocell
235(5)
Applying the OBT-OBIST Methodology to the DTMF Macrocell
240(32)
Biquad-Level Test
242(2)
System-Level Test
244(6)
A modified System Architecture
250(3)
An alternative implementation
253(4)
Cells adaptation for OBIST implementation
257(8)
Start-up problem
265(4)
The DTMF integrated prototype
269(3)
On-chip Evaluation of the OBT Output Signals
272(10)
Using a Frequency Measurement Counter
272(2)
Using a Peak Detector to determine the amplitude
274(1)
Using a low-accuracy ΣΔ modulator
275(7)
Electrical Simulation Results in the OBIST Mode
282(2)
Digital Processing Part of the DTMF
284(3)
Digital Detection algorithm
284(1)
Steering logic
285(1)
Simple Frequency Measurement Counter Block
285(2)
DTMF/OBIST Operation Modes Description
287(7)
OBIST Mode description
290(2)
Test Strategy Comparison
292(2)
Summary
294(3)
Obt-Obist Silicon Validation
297(62)
Introduction
297(1)
First Experimental Demonstrator
298(29)
Programmable biquad and fault programming
299(1)
Experimental results
300(24)
On-chip evaluation
324(3)
Second Circuit Demonstrator: DTMF Receiver
327(31)
Floor-Planning and Chip
328(1)
DTMF Operation Modes
329(29)
Summary
358(1)
Appendix 2.A 359(16)
Appendix 5.A 375(24)
Appendix 5.B 399(12)
Appendix 5.C 411(4)
Appendix 6.A 415(4)
Appendix 7.A 419(20)
References 439


Prof. José Luis Huertas is Director of the Instituto de Microelectronica de Sevilla in Spain. He has edited one book on Testing for Kluwer, that published in October 2004, and was series editor for the three book series from the European Mixed-Signal Initiative for Electronic System Design.