Muutke küpsiste eelistusi

E-raamat: P-adic Analytic Functions

(Universite Clermont Auvergne, France)
  • Formaat: 348 pages
  • Ilmumisaeg: 17-Mar-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811226236
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 105,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 348 pages
  • Ilmumisaeg: 17-Mar-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811226236
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of a closed disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. Thequestion of whether the ring of analytic functions - in the whole field or inside an open disk - is a Bezout ring is also examined"--
Introduction vii
A Ultrametric fields
1(52)
A.1 Basic definitions and properties of ultrametric fields
1(9)
A.2 Monotonous and circular niters
10(9)
A.3 Ultrametric absolute values for rational functions
19(9)
A.4 Hensel Lemma
28(5)
A.5 Extensions of ultrametric fields: The field Cp
33(6)
A.6 Normal extensions of Qp inside Cp
39(4)
A.7 Spherically complete extensions
43(4)
A.8 Transcendence order and transcendence type
47(6)
B Analytic elements and analytic functions
53(180)
B.1 Algebras R(D)
53(5)
B.2 Analytic elements
58(6)
B.3 Composition of analytic elements
64(5)
B.4 Multiplicative spectrum of H(D)
69(4)
B.5 Power and Laurent series
73(8)
B.6 Krasner-Mittag-Leffler theorem
81(10)
B.7 Factorization of analytic elements
91(4)
B.8 Algebras H(D)
95(6)
B.9 Derivative of analytic elements
101(12)
B.10 Properties of the function * for analytic elements
113(4)
B.11 Vanishing along a monotonous filter
117(5)
B.12 Quasi-minorated elements
122(6)
B.13 Zeros of power series
128(10)
B.14 Image of a disk
138(11)
B.15 Quasi-invertible analytic elements
149(7)
B.16 Logarithm and exponential in a p-adic field
156(4)
B.17 Problems on p-adic exponentials
160(8)
B.18 Divisors of analytic functions
168(10)
B.19 Michel Lazard's problem
178(7)
B.20 Motzkin factorization and roots of analytic functions
185(16)
B.21 Order of growth for entire functions
201(9)
B.22 Type of growth for entire functions
210(9)
B.23 Growth of the derivative of an entire function
219(4)
B.24 Growth of an analytic function in an open disk
223(10)
C Meromorphic functions and Nevanlinna theory
233(86)
C.1 Meromorphic functions in K
233(7)
C.2 Residues of meromorphic functions
240(7)
C.3 Meromorphic functions out of a hole
247(2)
C.4 Nevanlinna theory in K and in an open disk
249(11)
C.5 Nevanlinna theory out of a hole
260(8)
C.6 Immediate applications of the Nevanlinna theory
268(5)
C.7 Branched values
273(8)
C.8 Exceptional values of functions and derivatives
281(8)
C.9 Small functions
289(14)
C.10 The p-adic Hayman conjecture
303(10)
C.11 Bezout algebras of analytic functions
313(6)
Bibliography 319(6)
Definitions 325(6)
Notations 331(6)
Index 337