Muutke küpsiste eelistusi

E-raamat: PACS and Digital Medicine: Essential Principles and Modern Practice

(St. Lukes Medical Center, Milwaukee, Wisconsin, USA), (University of Texas MD Anderson Cancer Center, Houston, USA)
  • Formaat: 367 pages
  • Ilmumisaeg: 05-Nov-2010
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420083668
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 367 pages
  • Ilmumisaeg: 05-Nov-2010
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420083668
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

To improve efficiency and reduce administrative costs, healthcare providers, insurance companies, and governments are increasingly using integrated electronic health record (EHR) and picture archiving and communication systems (PACS) to manage patients medical information. Reflecting the latest applications of PACS technology, PACS and Digital Medicine: Essential Principles and Modern Practice discusses the essential principles of PACS, EHR, and related technological advancements as well as practical issues concerning the implementation, operation, and maintenance of PACS and EHR systems.

The book focuses on various components of PACS that use state-of-the-art technologies. The authors first present topics to consider prior to implementation, including design principles for PACS components and theory. They also cover post-installation quality control; security and privacy policies; maintenance, including upgrade/integration with other information systems; and governing standards. Each chapter includes an introduction to basic concepts and principles relevant to the topics, before exploring challenges that PACS users may encounter in daily work. Discussions are supplemented with more than 130 illustrations, along with case studies of implementation in two organizations.

A useful guide and broad overview of the field, this book presents key principles and practical steps for PACS and EHR implementations and maintenance. Although the technology and standards of healthcare IT will evolve over time, the theory and practical advice found in this text will remain pertinent in the future.

Arvustused

For someone looking for a concise summary of PACS, its environs (both departmental and enterprise), components, and support issuesthis book would be an excellent choice. Steve G. Langer, Medical Physics, October 2012

a thorough and practical reference for radiologists, administrators, engineers, and others who might create, manage, or use such a system. SciTech Book News, February 2011

Preface xxix
Acknowledgments xxxi
Authors xxxiii
1 Introduction
1(10)
1.1 History of PACS: The Transition to Digital Medicine
1(2)
1.1.1 From Paper and Film to Computers and Digital Imaging
1(1)
1.1.2 Early Attempts to Use Computers to Streamline Medical Records
2(1)
1.1.3 Early Research, Development, and Pioneers in PACS
2(1)
1.1.4 Formation of Professional Organizations in Medical Informaties
3(1)
1.1.5 Efforts in PACS around the World
3(1)
1.2 Technology Advancements Enabling Today's PACS
3(3)
1.2.1 Computer Network Development History
4(1)
1.2.2 Data Storage Technology History
4(1)
1.2.3 Establishment of Standards for Image Exchange in Medicine
5(1)
1.2.4 Imaging Modality Digitization
5(1)
1.2.5 Availability of IT Expertise
5(1)
1.3 Defining PACS
6(1)
1.3.1 From Mini-PACS to Enterprise PACS
6(1)
1.3.2 Advantages and Benefits of PACS
6(1)
1.3.3 Workflow Changes after Implementation of PACS
6(1)
1.4 Current Status
7(2)
1.4.1 Prerequisites for PACS Implementation
7(1)
1.4.1.1 Digitization of All Image Acquisition Modalities
7(1)
1.4.1.2 Adequate Computer Network Infrastructure
7(1)
1.4.1.3 Clinical Information Systems
7(1)
1.4.1.4 Adequate Space and Facility Planning
8(1)
1.4.1.5 Computer and Software Training for Staff
8(1)
1.4.2 PACS Implementation and Clinical Operation
8(1)
1.4.3 Toward Fully Integrated Healthcare Enterprises
8(1)
Bibliography
9(2)
2 PACS Servers and Workstations
11(26)
2.1 PACS Server
11(4)
2.1.1 Multiservers for Load-Balancing and Fail Over
11(1)
2.1.2 Load-Balancing
11(1)
2.1.3 Fail Over
12(1)
2.1.4 Server Load-Balancing and Fail Over Combined
12(3)
2.2 Types of Image Display Workstations in PACS
15(6)
2.2.1 Primary Diagnostic Workstation
15(2)
2.2.2 Clinical Review Workstation
17(1)
2.2.3 Advanced Image Analysis Workstation
17(1)
2.2.4 QA/QC Workstation
18(1)
2.2.5 Digitization, Printing, CD-Burning Workstation
18(3)
2.2.6 Office Desktop Workstation
21(1)
2.2.7 Thick and Thin Client
21(1)
2.3 PACS Workstation Architecture
21(8)
2.3.1 Major Components of a PACS Image Display Workstation
22(1)
2.3.2 Hardware
22(1)
2.3.2.1 CPU
22(1)
2.3.2.2 Memory
23(1)
2.3.2.3 Communication and Network Devices
23(1)
2.3.2.4 Graphics Card
23(1)
2.3.2.5 Video Memory
24(1)
2.3.2.6 Display Monitor
24(1)
2.3.3 Software
24(1)
2.3.3.1 Operating System Software
24(1)
2.3.3.2 Application Software
24(1)
2.3.4 Typical Features of Diagnostic Image Display Workstation
25(1)
2.3.4.1 Window and Level
26(1)
2.3.4.2 Pan and Zoom
26(1)
2.3.4.3 Sorting and Filtering
27(1)
2.3.4.4 Worklist
27(1)
2.3.4.5 Distance and Area Measurement
27(1)
2.3.4.6 Hanging Protocol
28(1)
2.3.4.7 3D Reformat and Volume Stack
28(1)
2.3.4.8 Movie Loop
28(1)
2.3.4.9 Importing Results of Advanced Image Post-Processing
28(1)
2.4 Environment for PACS Workstations
29(1)
2.4.1 PACS Workstation Reading Room Design
29(1)
2.4.2 The Hardware Configuration of Display Workstations: Number of Monitors
29(1)
2.4.3 Ergonomic Design of Workstations
30(1)
2.5 Radiology Workflow
30(2)
2.5.1 Film-Based Workflow without PACS
30(1)
2.5.2 RIS and PACS Workflow
30(1)
2.5.3 Filmless Workflow with PACS/RIS
30(2)
2.6 Speech Recognition for Report Dictation
32(3)
2.6.1 Benefits of Speech Recognition for Reporting
32(1)
2.6.2 Speech Recognition Report Dictation Approaches
33(1)
2.6.2.1 Front-End Real-Time Speech Recognition with Self-Editing
33(1)
2.6.2.2 Rear-End Speech Recognition with Delegated Editing
33(1)
2.6.3 Templates and Shortcuts
34(1)
2.6.4 Challenges and Limitations of Speech Recognition for Reporting
34(1)
2.6.5 Integrating Speech Recognition Technology into Radiology Workflow
34(1)
2.6.5.1 Transcription Service
35(1)
2.6.5.2 Physician
35(1)
2.7 New Developments
35(1)
Bibliography
36(1)
3 Image Display Devices in PACS
37(28)
3.1 Introduction
37(2)
3.1.1 Role of Image Display in Medical Imaging
37(1)
3.1.2 Brief History of Digital Medical Image Display Systems
37(2)
3.2 Softcopy Image Display System
39(2)
3.2.1 Graphics Card
39(1)
3.2.2 Image Display Devices
39(1)
3.2.3 Data Flow in Image Display Devices
39(2)
3.3 Overview of Image Display Technologies
41(4)
3.3.1 History of CRT Monitors
42(1)
3.3.2 LCD Monitors
43(2)
3.3.3 FED Devices
45(1)
3.3.4 OLED Technology
45(1)
3.4 Quality Standards for Display Devices
45(8)
3.4.1 Class 1 and Class 2 Image Display Devices
46(1)
3.4.2 Color versus Monochrome Displays
47(1)
3.4.3 Image Quality Dependence on Configuration of Display Devices
48(1)
3.4.4 Factors Determining Display Device Quality
48(1)
3.4.4.1 Physical Dimensions
49(1)
3.4.4.2 Input and Output Signal Types
49(1)
3.4.4.3 Matrix Size
49(1)
3.4.4.4 Display Area
49(1)
3.4.4.5 Pixel Size
50(1)
3.4.4.6 Refresh Rate
50(1)
3.4.4.7 Luminance
50(1)
3.4.4.8 Luminance Uniformity
51(1)
3.4.4.9 Surface Antireflection Treatments
52(1)
3.4.4.10 Bit Depth
52(1)
3.4.4.11 Angular Dependence
52(1)
3.4.5 DICOM Standard GSDF
52(1)
3.5 QC and QA for Image Display Devices in PACS
53(9)
3.5.1 QC Requirements for Medical Image Display Devices
53(1)
3.5.2 Image Display Device QC and QA Procedures
53(1)
3.5.2.1 Ambient Lighting Level
54(1)
3.5.2.2 Minimum and Maximum Luminance Levels
55(1)
3.5.2.3 DICOM Standard GSDF Compliance
55(2)
3.5.2.4 Contrast Resolution and Noise
57(1)
3.5.2.5 Spatial Resolution
58(1)
3.5.2.6 Geometric Distortion
58(1)
3.5.2.7 Display Reflection
59(1)
3.5.2.8 Luminance Uniformity
60(1)
3.5.2.9 Angular Dependence
60(1)
3.5.2.10 Color Temperature
60(1)
3.5.3 QC Using Third-Party Software and Vendor-Provided QC Tools
61(1)
3.5.4 Frequency of QC for Display Devices
61(1)
Bibliography
62(3)
4 Networking Technologies
65(32)
4.1 Ethernet Local Area Network (LAN) and TCP/IP
65(5)
4.1.1 Open Systems Interconnection (OSI) Model
65(1)
4.1.1.1 Physical Layer
65(1)
4.1.1.2 Data Link Layer
65(1)
4.1.1.3 Network Layer
65(1)
4.1.1.4 Transport Layer
65(1)
4.1.1.5 Session Layer
65(1)
4.1.1.6 Presentation Layer
65(1)
4.1.1.7 Application Layer
65(1)
4.1.2 Ethernet
65(1)
4.1.3 Function of Ethernet
66(1)
4.1.4 Transmission Control Protocol/Internet Protocol (TCP/IP) Layers
67(1)
4.1.4.1 TCP
67(1)
4.1.4.2 IP
67(1)
4.1.4.3 Internet Protocol Version 6
68(1)
4.1.4.4 Static IP Address
68(1)
4.1.4.5 Dynamic Host Configuration Protocol (DHCP)
68(1)
4.1.5 Network Cables
69(1)
4.1.6 Network Bandwidth
69(1)
4.1.6.1 100 Mbps
69(1)
4.1.6.2 Gigabit and 10 Gigabit Ethernet
69(1)
4.1.6.3 Line Speed and Data Throughput
70(1)
4.1.7 Microwave Wireless Ethernet
70(1)
4.2 Wide Area Network
70(1)
4.2.1 ATM
70(1)
4.2.2 Leased Lines
71(1)
4.3 Network Topology
71(2)
4.3.1 Basic Network Topologies
71(1)
4.3.1.1 Linear Bus
71(1)
4.3.1.2 Star
72(1)
4.3.1.3 Ring
72(1)
4.3.1.4 Mesh
72(1)
4.3.2 Hybrid Network Topologies
72(1)
4.3.3 Logical Topology
72(1)
4.3.4 Routing and Switching
72(1)
4.3.4.1 Router and Gateway
72(1)
4.3.4.2 Switch
73(1)
4.4 Network Design Consideration
73(2)
4.4.1 Standards
74(1)
4.4.2 Scalability
74(1)
4.4.3 Reliability
74(1)
4.4.4 Security
74(1)
4.4.5 Performance and Cost
74(1)
4.4.6 Network Planning Considerations
74(1)
4.5 Optical Fibre Communication
75(8)
4.5.1 Basic Optics
76(1)
4.5.1.1 Refraction and Reflection
76(1)
4.5.1.2 Critical Angle
76(1)
4.5.2 Characteristics of Optical Fibre Communication
76(1)
4.5.2.1 Multimode Transmission
77(1)
4.5.2.2 Single-Mode Transmission
77(1)
4.5.2.3 Scattering
78(1)
4.5.2.4 Dispersion
78(1)
4.5.2.5 Optical Attenuation
78(1)
4.5.3 Principles of Optical Communication
78(1)
4.5.3.1 Transmitter
78(1)
4.5.3.2 Amplifier
79(1)
4.5.3.3 Receiver
79(1)
4.5.3.4 Wavelength-Division Multiplexing
79(1)
4.5.3.5 Dense Wavelength-Division Multiplexing
80(1)
4.5.3.6 Multiplexer and Demultiplexer
80(1)
4.5.4 Optical Fibre Cables
80(1)
4.5.4.1 Optical Fibre Cable Structure
80(1)
4.5.4.2 Cable Joining
81(1)
4.5.4.3 Cable Termination
81(1)
4.5.4.4 Cable Bending
81(1)
4.5.4.5 Water Proofing
82(1)
4.5.4.6 Optical Cable Handling
82(1)
4.5.5 Benefits of Optical Transmission
82(1)
4.5.5.1 Electromagnetic Interference
82(1)
4.5.5.2 Ground Loops
82(1)
4.5.5.3 Bandwidth
83(1)
4.5.5.4 Fibre Channel
83(1)
4.6 Network Security
83(6)
4.6.1 Data Encryption and Decryption
83(1)
4.6.2 Authentication and Data Integrity Check
83(1)
4.6.3 Digital Signature
84(1)
4.6.4 Digital Certificate
84(1)
4.6.5 Firewall
85(1)
4.6.5.1 Rules to Build a Firewall
85(1)
4.6.5.2 Firewall Components
85(1)
4.6.6 Secure Socket Layer and Transport Layer Security
85(1)
4.6.6.1 Objectives of SSL
86(1)
4.6.6.2 SSL Certificate
87(1)
4.6.6.3 SSL Considerations
87(1)
4.6.6.4 Purpose of Transport Layer Security
87(1)
4.6.6.5 Difference between SSL and TLS
87(1)
4.6.7 Virtual Private Network
87(1)
4.6.7.1 Virtual Private LAN/WAN Services
88(1)
4.6.7.2 VPN Security Models
89(1)
4.6.7.3 Authentication for VPN Connection
89(1)
4.6.7.4 VPN Implementation
89(1)
4.7 Wi-Fi and Wireless Local Area Network
89(2)
4.7.1 Wireless Application Protocol
89(1)
4.7.2 Wireless 802.11 Family Standards
90(1)
4.7.2.1 IEEE 802.11a
90(1)
4.7.2.2 IEEE 802.11b
90(1)
4.7.2.3 IEEE 802.11g
90(1)
4.7.2.4 IEEE 802.11n
90(1)
4.7.3 Wi-Fi Operation
91(1)
4.7.4 Wireless Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA)
91(1)
4.7.5 Wireless Transport Layer Security (WTLS)
91(1)
4.8 Backup and Alternative Network Using the Internet
91(3)
4.8.1 Digital Subscriber Line (DSL)
92(1)
4.8.1.1 Asymmetric DSL (ADSL)
92(1)
4.8.1.2 Equipment
92(1)
4.8.1.3 Limitations of DSL
92(1)
4.8.2 Cable Internet Access
92(1)
4.8.3 DSL and Cable Internet Service Provider Comparison
93(1)
4.8.4 Satellite Internet Access
93(1)
4.8.5 Cellular Broadband Internet Access
94(1)
Bibliography
94(3)
5 Data Storage
97(32)
5.1 Data Storage Media Types
97(7)
5.1.1 Magnetic Tape
97(1)
5.1.1.1 Example of AIT Magnetic Tape-Based Storage System
97(2)
5.1.1.2 IBM3592 Magnetic Tape Based Storage System
99(1)
5.1.2 High-Density Optical Storage Media
99(1)
5.1.2.1 CD-R and CD-RW
99(2)
5.1.2.2 DVD + R/DVD - R and DVD + RW/DVD - RW
101(1)
5.1.2.3 Blu-Ray
101(1)
5.1.3 Spin Disk
102(1)
5.1.3.1 Reliability of Spin Disks
102(1)
5.1.4 Solid State Drive
103(1)
5.1.4.1 RAM-Based SSD
103(1)
5.1.4.2 Flash Memory-Based SSD
103(1)
5.1.4.3 Hybrid Flash Drive
104(1)
5.1.4.4 Application in PACS/EHR Workstations
104(1)
5.1.4.5 Application for Short-Term and Long-Term PACS Storage
104(1)
5.2 Digital Storage Device Interface
104(6)
5.2.1 ATA
104(1)
5.2.2 SATA
104(1)
5.2.3 SCSI
105(1)
5.2.4 Serial Attached SCSI
105(1)
5.2.5 iSCSI
105(1)
5.2.6 Fibre Channel
106(1)
5.2.6.1 FC Layers
106(2)
5.2.6.2 FC Topologies
108(1)
5.2.6.3 FC Bandwidth
108(2)
5.3 Data Storage Attaching Configurations
110(9)
5.3.1 Direct Attached Storage
110(1)
5.3.1.1 DAS History
110(1)
5.3.1.2 Advantages of DAS
110(1)
5.3.1.3 Limitations of DAS
111(1)
5.3.2 Storage Area Network
111(1)
5.3.2.1 Defining SAN
111(1)
5.3.2.2 SAN Fabric and Topology
112(1)
5.3.2.3 Fibre Channel for SAN
112(1)
5.3.2.4 SAN Servers and Storage Devices
112(1)
5.3.2.5 Advantages of Using SAN
113(1)
5.3.2.6 Considerations for Planning SAN
113(1)
5.3.3 Network Attached Storage
114(1)
5.3.3.1 Introducing NAS
114(1)
5.3.3.2 Benefits of Using NAS
114(1)
5.3.3.3 Considerations for Using NAS
115(1)
5.3.4 Grid-Oriented Storage
115(1)
5.3.4.1 What is Grid Storage?
116(1)
5.3.4.2 Grid Architecture
116(1)
5.3.4.3 Grid Storage Characteristics and Benefits
117(1)
5.3.4.4 Considerations for Grid Storage Implementation
118(1)
5.4 Redundant Arrays of Independent Disks
119(3)
5.4.1 Data Striping and Data Mirroring
119(1)
5.4.2 RAID-0
119(1)
5.4.3 RAID-1
119(1)
5.4.4 RAID-3 and RAID-4
120(1)
5.4.5 RAID-5
120(1)
5.4.6 RAID-6
121(1)
5.4.7 RAID Spanned Arrays
121(1)
5.4.7.1 RAID-10
121(1)
5.4.7.2 RAID-50
121(1)
5.4.8 Hot Spare Disk and Rebuilding
121(1)
5.5 Image Data Compression
122(1)
5.5.1 JPEG
122(1)
5.5.2 JPEG2000
123(1)
5.5.3 Application of JPEG and JPEG2000 in DICOM
123(1)
5.6 Content-Addressed Storage
123(1)
5.6.1 What is CAS?
124(1)
5.6.2 Application of CAS
124(1)
5.7 Short-Term and Long-Term Storage for PACS/EHR
124(2)
5.7.1 Tiered Storage
125(1)
5.7.1.1 Defining Tiered Storage
125(1)
5.7.1.2 Tiered Storage for PACS
125(1)
Bibliography
126(3)
6 Healthcare Information Integration
129(30)
6.1 Health Level 7
129(6)
6.1.1 Introduction
129(1)
6.1.1.1 History
129(1)
6.1.1.2 HL7 Goal
129(1)
6.1.1.3 HL7 Organization
130(1)
6.1.2 HL7 Version 2.x
130(1)
6.1.2.1 Introduction
130(1)
6.1.2.2 HL7 Version 2.x Data Structure
130(1)
6.1.3 HL7 Version 3.x
131(1)
6.1.3.1 HL7 Reference Information Model
131(1)
6.1.3.2 HL7 V3.x Message Development Framework
132(1)
6.1.3.3 Clinical Document Architecture
132(1)
6.1.3.4 CDA Structure
132(1)
6.1.3.5 CDA and EHR
133(1)
6.1.3.6 Clinical Context Object Workgroup
133(1)
6.1.3.7 Arden Syntax
134(1)
6.1.3.8 HL7 Conformance and What Users Need to Know
134(1)
6.1.4 Future of HL7
135(1)
6.2 DICOM
135(12)
6.2.1 History
136(1)
6.2.2 Various DICOM Service Classes
136(1)
6.2.2.1 Query/Retrieve
137(1)
6.2.2.2 Storage
137(1)
6.2.2.3 Print
137(1)
6.2.2.4 Modality Worklist
138(1)
6.2.2.5 Modality Performed Procedure Step and Management States
139(1)
6.2.2.6 Image Hanging Protocol
139(1)
6.2.2.7 Structured Reporting
139(1)
6.2.3 Media Storage for Interchange
140(2)
6.2.4 DICOM GSDF Display Function
142(1)
6.2.5 Web Access to DICOM Persistent Objects
143(1)
6.2.6 DICOM Device Setup
144(1)
6.2.6.1 IP Address
144(1)
6.2.6.2 Port Number
144(1)
6.2.6.3 AE Title
144(1)
6.2.7 DICOM Conformance Statements
145(1)
6.2.8 New DICOM Development
146(1)
6.2.9 Future of DICOM
146(1)
6.3 Integrating the Healthcare Enterprise
147(3)
6.3.1 IHE Purpose
147(1)
6.3.2 IHE History
147(1)
6.3.3 IHE Domains
147(1)
6.3.4 IHE Process
148(1)
6.3.5 Relation with Standards
149(1)
6.3.6 Integration Profiles
149(1)
6.3.7 IHE Connectathon
149(1)
6.3.8 IHE Integration Statements
150(1)
6.4 IHE Technical Frameworks
150(6)
6.4.1 IHE Integration Profiles
151(1)
6.4.2 IHE Radiology
151(1)
6.4.2.1 Scheduled Radiology Workflow
152(1)
6.4.2.2 Postprocessing Workflow
152(1)
6.4.2.3 Patient Information Reconciliation
153(1)
6.4.2.4 Consistent Presentation of Images
153(1)
6.4.2.5 Presentation of Grouped Procedures
153(1)
6.4.2.6 Access to Radiology Information
153(1)
6.4.2.7 Key Image Notes
154(1)
6.4.2.8 Simple Image and Numeric Reports
154(1)
6.4.2.9 Charge Posting
154(1)
6.4.3 Relevance of IHE to the User
154(1)
6.4.3.1 IHE User's Handbooks
154(1)
6.4.3.2 How to Understand IHE Integration Statement
155(1)
Bibliography
156(3)
7 Teleradiology
159(20)
7.1 Teleradiology Overview
159(9)
7.1.1 History of Telemedicine and Teleradiology
159(1)
7.1.1.1 Early Development
160(1)
7.1.1.2 Financial Model of Early Telemedicine Projects
160(1)
7.1.1.3 Technical Challenges in Early Days of Teleradiology
161(1)
7.1.2 Scope of Teleradiology
161(1)
7.1.2.1 Driving Forces for Teleradiology Development
161(1)
7.1.2.2 Economic Aspects of Teleradiology
162(1)
7.1.2.3 Enabling Technological Advancements for Teleradiology over the Past Decades
162(1)
7.1.3 Applications and Benefits of Teleradiology
162(2)
7.1.3.1 Reduced Turnaround Time
164(1)
7.1.3.2 Subspecialty Utilization
164(1)
7.1.3.3 Workload Balancing
164(1)
7.1.4 Remote Image Access
164(4)
7.2 Technical Considerations for Teleradiology Implementation
168(2)
7.2.1 Image Acquisition and Digitization
168(1)
7.2.2 Data Compression
168(1)
7.2.3 Roles of PACS in Teleradiology
168(1)
7.2.4 ACR Standard for Teleradiology
168(1)
7.2.5 Image Transmission in Teleradiology
168(1)
7.2.6 Integration of Teleradiology with Information Systems and EHR/PHR
169(1)
7.2.7 ACR Technical Guidelines for Data Storage
169(1)
7.2.8 Teleradiology Implementation Considerations
170(1)
7.3 Teleradiology Quality Control
170(1)
7.3.1 Overall Quality Control Requirements
170(1)
7.3.2 Image and Data Integrity
170(1)
7.3.3 Data Security and Patient Privacy
170(1)
7.3.4 Verification and Validation of Display Quality
171(1)
7.3.5 Image Quality Considerations for Handheld Devices
171(1)
7.3.6 Peer Review and Quality Control
171(1)
7.4 Legal and Social Considerations
171(2)
7.4.1 Considerations of Remote Reading in Teleradiology
171(1)
7.4.2 Ownership and Responsibility of Data Storage
172(1)
7.4.3 Communication Improvement
172(1)
7.4.4 International Teleradiology Guidelines
172(1)
7.5 Challenges and Future Trends in Teleradiology
173(2)
7.5.1 Potential Impact to Radiology
173(1)
7.5.2 Faster Image Transmission
173(1)
7.5.3 Teleradiology Service in Multienterprise and Multivendor Environments
174(1)
7.5.4 Cross-Enterprise Image Sharing of EHR and PHR Integration
174(1)
7.5.5 RSNA/NIBIB Image-Sharing Initiative
174(1)
7.5.6 Future Growth of Telemedicine and Teleradiology
174(1)
7.5.7 Teleradiology and Telemedicine in Developing Countries
175(1)
Bibliography
175(4)
8 Practical PACS Implementation
179(24)
8.1 Financial Analysis
179(2)
8.1.1 Cost Analysis
179(1)
8.1.2 Benefit Analysis
180(1)
8.2 Planning and Development
181(5)
8.2.1 Forming the Right Team
181(1)
8.2.2 Defining Goals and Vision
182(1)
8.2.3 Coordinating Efforts and Consolidating Resources among Various Departments
182(1)
8.2.4 Project Planning
183(1)
8.2.5 Workflow Analysis
183(1)
8.2.6 Facility Planning
184(1)
8.2.7 Storage Requirements
184(1)
8.2.8 Network Infrastructure
184(1)
8.2.9 Imaging Modality Assessment
185(1)
8.2.9.1 Magnetic Resonance Imaging
185(1)
8.2.9.2 Computed Tomography
185(1)
8.2.9.3 Ultrasonography
185(1)
8.2.9.4 Nuclear Medicine/Positron Emission Tomography
185(1)
8.2.9.5 Computer Radiography and Digital Radiography
185(1)
8.2.9.6 Digital Fluoroscopy and Vascular Imaging
186(1)
8.2.9.7 Mammography
186(1)
8.3 PACS Equipment Selection and Contract Preparation
186(7)
8.3.1 PACS Selection
186(1)
8.3.1.1 Hardware Considerations
187(1)
8.3.1.2 Software Considerations
188(1)
8.3.1.3 System Integration Issues
189(1)
8.3.1.4 Image Display System Requirements
190(1)
8.3.2 Writing Specifications for the Request for Proposal
191(1)
8.3.3 RFP Evaluation
192(1)
8.3.4 Site Visit
192(1)
8.3.5 Contract Negotiation
192(1)
8.4 Implementation
193(2)
8.4.1 Implementation Team and Responsibilities
193(1)
8.4.2 Timelines and Clinical Area Downtime Planning
193(1)
8.4.3 Acceptance Criteria and Testing
194(1)
8.4.4 Transition and Continuous User Training
194(1)
8.4.5 Teleradiology Considerations
195(1)
8.4.6 Routine QA
195(1)
8.5 Case Studies
195(6)
8.5.1 PACS Implementation in a 400-Bed Children's Hospital
195(1)
8.5.1.1 Defining Goals and Expectations
195(1)
8.5.1.2 Justifying PACS
196(1)
8.5.1.3 Workflow Analysis
196(1)
8.5.1.4 Network Requirement Analysis
196(1)
8.5.1.5 Estimation of Archive Needs
197(1)
8.5.1.6 Writing Specifications for the RFP
197(1)
8.5.1.7 Site Visit
197(1)
8.5.1.8 Contract
197(1)
8.5.1.9 Installation and Timelines and Clinical Interruption Planning
197(1)
8.5.1.10 Maintenance and QA
197(1)
8.5.2 PACS Implementation in a 950-Bed Tertiary Care Hospital
197(1)
8.5.2.1 Planning
198(1)
8.5.2.2 Facility Planning
198(1)
8.5.2.3 Network
198(1)
8.5.2.4 Imaging Modality DICOM Connectivity
198(2)
8.5.2.5 Installation
200(1)
8.5.2.6 Training
200(1)
Bibliography
201(2)
9 Upgrading and Replacing Legacy PACS
203(20)
9.1 Legacy System and IT Infrastructure Assessment
203(1)
9.1.1 Reasons for Replacing PACS
203(1)
9.1.2 Differences between First-Time and Replacement PACS Implementations
204(1)
9.2 PACS/RIS Upgrade Considerations
204(1)
9.2.1 Major Upgrade Planning
204(1)
9.2.2 Independent Enterprise Long-Term Archive
204(1)
9.3 PACS-Replacement Planning
205(5)
9.3.1 Replacement System Selection and Evaluation
205(1)
9.3.1.1 Enterprise PACS
206(1)
9.3.1.2 Replacement System Vendor Selection
206(1)
9.3.1.3 Replacement System Evaluation
207(1)
9.3.1.4 RIS Replacement System Evaluation
208(1)
9.3.1.5 Single Vendor PACS and RIS Considerations
208(1)
9.3.1.6 Multivendor PACS and RIS
208(1)
9.3.1.7 Replacement PACS Storage Design
209(1)
9.3.1.8 System Uptime and Downtime Issues
209(1)
9.3.1.9 Replacement System Integration Considerations
209(1)
9.3.2 Feasibility of Reusing Workstation Display Monitors
210(1)
9.4 Network Infrastructure Upgrade
210(3)
9.4.1 Network Upgrade
210(1)
9.4.2 LAN Network Cabling
211(1)
9.4.3 Next Generation Ethernet WAN
211(1)
9.4.4 Benefits of Ethernet WAN
211(1)
9.4.5 Ethernet WAN Services
212(1)
9.5 Legacy PACS Data Migration
213(3)
9.5.1 Data Retention Period
213(1)
9.5.2 Scope of Data Migration
213(1)
9.5.3 Data Migration Planning
214(1)
9.5.4 Data Migration Approaches
214(1)
9.5.4.1 Migration Using Long-Term Archives
215(1)
9.5.4.2 Self-Supported Data Migration
215(1)
9.5.4.3 Data Migration Service
215(1)
9.5.4.4 Data Migration Service Considerations
215(1)
9.5.5 Vendor Collaboration for Data Migration
216(1)
9.5.6 Data Cleansing and Error Correction
216(1)
9.5.7 Proprietary Data on Legacy System
216(1)
9.6 Replecement System Go-Live and Training
216(4)
9.6.1 Transition Planning and Going Live
217(1)
9.6.2 Replacement PACS Data Preload
217(1)
9.6.2.1 Dual-Send Approach
217(1)
9.6.2.2 Relay from Legacy PACS
218(1)
9.6.2.3 Relay from Intermediate Server to Replacement System
218(1)
9.6.3 Testing and Simulation before Replacement System Launch
218(1)
9.6.4 Replacement System Training
219(1)
9.6.5 Replacement System Acceptance Testing
219(1)
9.7 Future Development
220(1)
Bibliography
220(3)
10 Enterprise PACS
223(38)
10.1 Introduction
223(1)
10.2 Cardiology PACS
223(12)
10.2.1 Cardiology Workflow
223(1)
10.2.2 Comparison between Cardiology and Radiology Workflow and PACS Requirements
224(1)
10.2.3 Challenges and Requirements for Cardiology PACS
224(1)
10.2.3.1 Data and Dynamic Display
224(1)
10.2.3.2 Data Mining
225(1)
10.2.4 DICOM Cardiology Extensions and Reports
225(1)
10.2.4.1 Echocardiography Procedure Report
226(1)
10.2.4.2 Cardiac Stress-Testing Structured Report
226(1)
10.2.4.3 Cardiac Catheterization Laboratory Structured Report
226(1)
10.2.4.4 Intravascular Ultrasound Structured Report
226(1)
10.2.4.5 Procedure Log
226(1)
10.2.4.6 Quantitative Arteriography and Ventriculography Structured Report
226(1)
10.2.4.7 Hemodynamic Measurements Report
227(1)
10.2.4.8 Electrocardiography Report
227(1)
10.2.4.9 CT/MR Cardiovascular Report
227(1)
10.2.5 IHE Cardiology
228(1)
10.2.5.1 Benefits of IHE Cardiology Implementation
228(1)
10.2.5.2 Cardiac Catheterization Workflow
229(1)
10.2.5.3 Echocardiography Workflow
230(1)
10.2.5.4 Retrieve ECG for Display
230(1)
10.2.5.5 Stress-Testing Integration Profiles
230(3)
10.2.5.6 Displayable Reports
233(1)
10.2.5.7 Electrophysiology Lab Workflow and Useful Integration Profiles
233(1)
10.2.5.8 Implantable Device Cardiac Observation
233(1)
10.2.5.9 Urgent Implantable Rhythm Control Device Identification
233(1)
10.2.5.10 NM Imaging Cardiology Option
234(1)
10.2.6 Cardiology PACS and Information System Integration
234(1)
10.2.6.1 CIS Benefits
234(1)
10.2.6.2 Cardiology PACS and CIS Implementation Considerations
235(1)
10.2.6.3 Cardiology Systems Integration Challenges
235(1)
10.2.6.4 Development Trends
235(1)
10.3 Pathology PACS
235(11)
10.3.1 Pathology Workflow
236(1)
10.3.2 Digital Pathology Benefits
237(1)
10.3.2.1 Improved Workflow
237(1)
10.3.2.2 Reduced Turnaround Time
237(1)
10.3.2.3 Eliminating Glass Slide Transportation
237(1)
10.3.2.4 Telepathology and Distributed Workload
237(1)
10.3.2.5 Collaboration and Second Opinion Consultation
237(1)
10.3.2.6 Advanced Review and Digital Imaging Analysis on Workstations
237(1)
10.3.2.7 Digital Records for EHR/PHR
237(1)
10.3.3 Digital Pathology Challenges and Considerations
238(1)
10.3.3.1 Image Data Acquisition with Glass Slide Scanning
239(1)
10.3.3.2 Image Data Compression
239(1)
10.3.3.3 DICOM Limits for WSI
240(1)
10.3.3.4 Tile Image Organization
240(1)
10.3.4 DICOM Standards for Digital Pathology
241(1)
10.3.4.1 Pyramid Image Data Model for WSI
241(1)
10.3.4.2 Slide Image Orientation
242(1)
10.3.4.3 DICOM Modality Worklist and Modality Performed Procedure for Pathology Workflow
243(1)
10.3.4.4 Digital Anatomic Pathology Workflow and LIS Integration
243(1)
10.3.4.5 Image Query
243(1)
10.3.5 IHE Anatomic Pathology
243(1)
10.3.5.1 Integration Profiles in the Anatomic Pathology Domain
243(1)
10.3.5.2 Anatomic Pathology Workflow
244(1)
10.3.5.3 Anatomic Pathology Reporting to Public Health
245(1)
10.3.5.4 Future Developments
246(1)
10.4 Radiation Oncology PACS
246(5)
10.4.1 Treatment Management System and Treatment Delivery System
246(1)
10.4.2 DICOM for Radiation Oncology
246(1)
10.4.2.1 Basic DICOM RT Objects
246(2)
10.4.2.2 DICOM Second-Generation RT Objects
248(1)
10.4.2.3 RT Machine Verification Service Class and RT Ion Machine Verification Service Class
248(1)
10.4.2.4 Unified Worklist and Procedure Step Service Class for Radiation Oncology
248(1)
10.4.2.5 RT Course Introduction
248(1)
10.4.3 IHE Radiation Oncology
249(1)
10.4.3.1 Radiation Therapy Objects Integration Profile
249(1)
10.4.3.2 Image Registration
249(1)
10.4.3.3 RT Treatment Delivery Integrated Positioning and Delivery Workflow
249(1)
10.4.3.4 RT Treatment Delivery Discrete Positioning and Delivery Workflow
249(1)
10.4.3.5 Future Developments
250(1)
10.5 Endoscopy and Other Visible Light Specialities
251(5)
10.5.1 Endoscopy-Specific Requirements and Technical Challenges
251(1)
10.5.2 Legacy Systems
252(1)
10.5.3 DICOM Visible Light Standard and Video Formats
253(1)
10.5.4 IHE-J Endoscopy Workflow Integration Profile
254(2)
10.5.5 Enterprise Integration with other PACS and EHR/PHR
256(1)
Bibliography
256(5)
11 Electronic Health Record and Personal Health Record Implementation
261(32)
11.1 Introduction
261(1)
11.1.1 Electronic Medical Record and Electronic Health Record
261(1)
11.1.2 Personal Health Record
262(1)
11.2 HL7 EHR Model
262(7)
11.2.1 HL7 EHR Functional Model
262(1)
11.2.1.1 Functional Outline
263(1)
11.2.1.2 Function Components
264(1)
11.2.1.3 Functional Profile
264(1)
11.2.1.4 Conformance Criteria
264(1)
11.2.2 EHR Interoperability
265(1)
11.2.2.1 Technical Interoperability
265(1)
11.2.2.2 Semantic Interoperability
265(1)
11.2.2.3 Process Interoperability
266(1)
11.2.3 HL7 EHR Interoperability Model
266(1)
11.2.3.1 EHR Interoperability Model Components
267(1)
11.2.3.2 EHR Interoperability Model Profiles
268(1)
11.2.3.3 EHR Record Validation and Conformance Test
268(1)
11.2.4 Certification Commission for Healthcare Information Technology
268(1)
11.3 HL7 PHR System Model
269(3)
11.3.1 Personal Health Functions
269(1)
11.3.2 Supportive Functions
269(1)
11.3.3 Information Infrastructure Functions
269(1)
11.3.4 Components of PHR Functions
270(1)
11.3.5 PHR System Functional Profiles
271(1)
11.3.6 Conformance Criteria
271(1)
11.3.7 Types of PHR Systems
271(1)
11.3.7.1 Provider-Linked PHR Systems
271(1)
11.3.7.2 Payer-Linked PHR Systems
271(1)
11.3.7.3 Web-Based, Hybrid Provider-and Payer-Linked PHR Systems
272(1)
11.4 Standards Used in EHR and PHR
272(5)
11.4.1 IHE IT Infrastructure for Health Information Exchange
272(1)
11.4.1.1 Patient Identifier Cross-Referencing
272(1)
11.4.1.2 Patient Demographics Query
272(1)
11.4.1.3 Cross-Enterprise Document Sharing
273(1)
11.4.1.4 Cross-Enterprise Document Media Interchange
273(1)
11.4.1.5 Cross-Enterprise Document Sharing for Imaging
273(1)
11.4.1.6 Cross-Enterprise Sharing of Scanned Documents
274(1)
11.4.1.7 Patient Synchronized Applications
274(1)
11.4.1.8 Retrieve Information for Display
274(1)
11.4.2 Clinical Vocabulary and Classification Systems
274(1)
11.4.2.1 Systematized Nomenclature of Medicine: Clinical Terms
274(1)
11.4.2.2 Current Procedural Terminology Code
275(1)
11.4.2.3 International Classification of Diseases
275(1)
11.4.2.4 Logical Observation Identifiers Names and Codes
275(1)
11.4.3 Continuity of Care Record
276(1)
11.4.3.1 CCR Content
276(1)
11.4.3.2 CCR Structure
277(1)
11.4.4 Continuity of Care Document
277(1)
11.5 Guide for EHR Implementations
277(8)
11.5.1 Financial and Needs Analysis
278(1)
11.5.2 Product Selection
279(1)
11.5.2.1 Application Service Provider and Client/Server EHR
279(1)
11.5.2.2 EHR System Hardware Selection
280(1)
11.5.2.3 Vendor Evaluation
281(1)
11.5.3 Request for Proposal and Request for Information
281(1)
11.5.4 Site Visit and Contract Negotiation
281(1)
11.5.5 System Installation and System Go-Live
282(1)
11.5.6 Paper Medical Record Conversion and Abstraction to EHR
283(1)
11.5.7 Physician and Staff Training
284(1)
11.5.8 Enterprise Integration
284(1)
11.6 Health Information Exchange at Regional and National Levels
285(4)
11.6.1 Regional Health Information Organization and Health Information Exchange
285(1)
11.6.1.1 RHIO Centralized Model
285(1)
11.6.1.2 RHIO Federated Model
286(1)
11.6.2 RHIO Business Sustaining Model
286(1)
11.6.3 U.S. National Health Information Network
287(1)
11.6.4 The Federal Health Information Technology Strategic Plan
287(1)
11.6.5 Global EHR Implementation Status
288(1)
11.6.5.1 Governance and Funding
288(1)
11.6.5.2 Challenges to Global Healthcare IT Implementation
288(1)
Bibliography
289(4)
12 Quality Control, Security, and Downtime Management
293(26)
12.1 PACS Patient File Reconciliation and Quality Control
293(1)
12.2 Downtime Planning
293(2)
12.2.1 Fault Tolerance
294(1)
12.2.2 Unscheduled Downtime
294(1)
12.2.3 Scheduled Downtime
295(1)
12.3 Health Insurance Portability and Accountability Act
295(5)
12.3.1 Privacy Rule
296(1)
12.3.2 Security Rule
296(1)
12.3.2.1 Administrative Safeguards
297(1)
12.3.2.2 Physical Safeguards
298(1)
12.3.2.3 Technical Safeguards
299(1)
12.3.3 Other HIPAA Administration Simplification Rules
299(1)
12.3.4 Policies and Procedures Evaluation
299(1)
12.4 Contingency Plan and Disaster Recovery
300(2)
12.4.1 Disaster Recovery
300(1)
12.4.2 Disaster Recovery Planning
301(1)
12.4.3 Data Backup Plan
301(1)
12.4.4 Emergency Mode Operation
302(1)
12.4.5 Testing and Revision of Contingency Plan
302(1)
12.5 Security Management Process
302(6)
12.5.1 Risk Analysis
303(1)
12.5.1.1 Identification of Vulnerability
303(1)
12.5.1.2 Identification of Threats
303(1)
12.5.1.3 Asset Identification and Valuation
303(1)
12.5.2 Risk Mitigation and Management
303(1)
12.5.3 Facility Security and Access Control
304(1)
12.5.4 Workforce Security
304(2)
12.5.5 Security Requirements on Contractors and Business Associates
306(1)
12.5.6 Security and Privacy Considerations for Remote Services
306(1)
12.5.7 Sanction Policy
307(1)
12.5.8 Security Incident Procedures and Responses
307(1)
12.5.9 Information System Activity Review
308(1)
12.6 Device and Access Control
308(2)
12.6.1 Workstation Security
308(1)
12.6.2 Laptop Computers
308(1)
12.6.3 Electronic Mobile Devices Usage
309(1)
12.6.4 Device and Media Control
309(1)
12.6.5 Emailing EPHI Consideration
310(1)
12.6.6 Authentication
310(1)
12.6.7 Data Integrity
310(1)
12.6.8 Audit Control
310(1)
12.7 DICOM and IHE Security Mechanism
310(5)
12.7.1 DICOM Security Mechanisms
311(1)
12.7.1.1 DICOM Security Profiles
311(1)
12.7.1.2 Basic TLS Secure Transport Connection Profile
311(1)
12.7.1.3 User Identity Plus Passcode Association Profile
312(1)
12.7.1.4 Secure Use of E-mail Transport Profile
312(1)
12.7.2 IHE Security and Privacy Control
312(1)
12.7.2.1 Basic Patient Privacy Consents
312(1)
12.7.2.2 Enterprise User Authentication
313(1)
12.7.2.3 Cross-Enterprise User Assertion
313(1)
12.7.2.4 Audit Trail and Node Authentication
313(1)
12.7.2.5 IHE Security Measures for Cross-Enterprise Exchange of Information
314(1)
Bibliography
315(4)
Index 319
Yu Liu, Ph.D., DABR, is a senior imaging physicist certified by the American Board of Radiology. He works in the radiology department at St. Lukes Medical Center of Aurora Healthcare in Milwaukee, Wisconsin. Since 1997, he has been involved in PACS implementation and operation. He earned his Ph.D. in biomedical engineering from Duke University.

Jihong Wang, Ph.D., DABR, is an associate professor at the MD Anderson Cancer Center in Houston, Texas. He implemented the first major PACS system for the University of Texas Southwestern Medical School in Dallas while he was a faculty member there from 19962004. He earned his Ph.D. in medical physics from the University of Colorado at Boulder.