Muutke küpsiste eelistusi

E-raamat: Paraconsistent Logic: Consistency, Contradiction and Negation

  • Formaat - PDF+DRM
  • Hind: 147,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is the first in the field of paraconsistency to offer a comprehensive overview of the subject, including connections to other logics and applications in information processing, linguistics, reasoning and argumentation, and philosophy of science. It is recommended reading for anyone interested in the question of reasoning and argumentation in the presence of contradictions, in semantics, in the paradoxes of set theory and in the puzzling properties of negation in logic programming. Paraconsistent logic comprises a major logical theory and offers the broadest possible perspective on the debate of negation in logic and philosophy. It is a powerful tool for reasoning under contradictoriness as it investigates logic systems in which contradictory information does not lead to arbitrary conclusions. Reasoning under contradictions constitutes one of most important and creative achievements in contemporary logic, with deep roots in philosophical questions involving negation and c

onsistencyThis book offers an invaluable introduction to a topic of central importance in logic and philosophy. It discusses (i) the history of paraconsistent logic; (ii) language, negation, contradiction, consistency and inconsistency; (iii) logics of formal inconsistency (LFIs) and the main paraconsistent propositional systems; (iv) many-valued companions, possible-translations semantics and non-deterministic semantics; (v) paraconsistent modal logics; (vi) first-order paraconsistent logics; (vii) applications to information processing, databases and quantum computation; and (viii) applications to deontic paradoxes, connections to Eastern thought and to dialogical reasoning.

Chapter 1. Introduction: Contradictions and (in)consistency.- Chapter 2. A basic logic of formal inconsistency: mbC.- Chapter 3. Some extensions of mbC.- Chapter 4. Matrices and algebraizability.- Chapter 5. LFIs based on other logics.- Chapter 6. Alternative semantics for LFIs.- Chapter 7. First-order LFIs.- Chapter 8. Paraconsistent set theory.- Chapter 9. Paraconsistent modal logic.- Chapter 10. Paraconsistency and philosophy of science: perspectives.

Arvustused

This is a formal book focusing on logics of formal inconsistency (LFI). the authors focus on various issues in philosophy of science and do a great job to exhibit the breadth and depth of LFIs. the book is very thought-provoking, which is a great advantage of researchers. This book is a first step to identify, understand and explore these questions. (Can Baskent, zbMATH 1355.03001, 2017)

1 Contradiction and (in)Consistency
1(28)
1.1 Introduction
1(3)
1.2 On the Philosophy of the Logics of Formal Inconsistency
4(6)
1.3 A Historical Sketch: The Forerunners of the Logics of Formal Inconsistency
10(1)
1.4 Paraconsistency and the Nature of Logic
11(4)
1.5 Paraconsistency and the Nature of Contradictions
15(3)
1.6 Contradiction, Consistency and Negation
18(6)
1.6.1 On Contradiction
19(1)
1.6.2 On Consistency
20(1)
1.6.3 On Negation
21(3)
1.7 Varieties of Paraconsistency Involvement
24(5)
References
26(3)
2 A Basic Logic of Formal Inconsistency: mbC
29(34)
2.1 Introducing mbC
29(6)
2.2 A Valuation Semantics for mbC
35(4)
2.3 Applications of mbC-Valuations
39(4)
2.4 Recovering Classical Logic Inside mbC
43(7)
2.5 Reintroducing mbC as an Expansion of CPL
50(13)
2.5.1 The New Presentation mbC of mbC
51(2)
2.5.2 Valuation Semantics for mbC
53(2)
2.5.3 Equivalence Between mbC and mbC
55(6)
References
61(2)
3 Some Extensions of mbC
63(58)
3.1 A Wider Form of Truth-Functionality for Consistency
63(5)
3.2 A Hidden Consistency Operator
68(3)
3.3 Consistency and Inconsistency as Derived Connectives
71(20)
3.4 Some Conceptual Differences Between mbC and mbC
91(4)
3.5 Inconsistency Operators and Double-Negations
95(9)
3.6 Propagating Consistency
104(7)
3.7 da Costa's Hierarchy and Consistency Propagation
111(4)
3.8 A Stronger Consistency Propagation
115(6)
References
119(2)
4 Matrices and Algebraizability
121(50)
4.1 Logical Matrices
121(1)
4.2 Uncharacterizability by Finite Matrices
122(7)
4.3 The Problem of Algebraizability of LFIs
129(7)
4.4 Some 3-Valued LFIs
136(35)
4.4.1 Hallden's Logic of Nonsense (1949)
136(2)
4.4.2 Segerberg's Logic of Nonsense (1965)
138(2)
4.4.3 da Costa and D'Ottaviano's Logic J3 (1970)
140(4)
4.4.4 Sette's Logic P1 (1973)
144(5)
4.4.5 Asenjo-Priest's Logic LP (1966--1979)
149(2)
4.4.6 Ciore and Other Related Systems
151(7)
4.4.7 LFI1, MPT and J3
158(10)
References
168(3)
5 LFIs Based on Other Logics
171(66)
5.1 LFIs Based on Positive Intuitionistic Logic
171(20)
5.1.1 Basic Features of Positive Intuitionistic Logic
171(4)
5.1.2 Johansson's Minimal Logic
175(4)
5.1.3 Nelson's Paraconsistent Logic N4
179(8)
5.1.4 An Intuitionistic Version of mbC
187(4)
5.2 LFIs Based on Fuzzy Logics
191(20)
5.2.1 Preliminaries on MFL
191(6)
5.2.2 Fuzzy Logics with a Consistency Operator
197(8)
5.2.3 Propagation of Consistency and DAT
205(3)
5.2.4 Fuzzy Logics with an Inconsistency Operator
208(3)
5.3 A Modal LFI Based on Belnap and Dunn's Logic BD
211(18)
5.3.1 The Logic M4m of Tetravalent Modal Algebras
213(5)
5.3.2 M4m as an LFI
218(4)
5.3.3 M4m as a dC-System
222(2)
5.3.4 The Contrapositive Implication
224(2)
5.3.5 A Hilbert-Style Axiomatization of Mc4m
226(3)
5.4 Paraconsistent Modalities, Consistency and Determinedness
229(8)
References
233(4)
6 Semantics of Non-deterministic Character for LFIs
237(56)
6.1 Fidel Structures for mbC
238(4)
6.2 Fidel Structures for Some Extensions of mbC
242(9)
6.3 Non-deterministic Matrices
251(2)
6.4 Swap Structures for mbC
253(7)
6.5 Swap Structures for Some Extensions of mbC
260(12)
6.6 Axiom (cl) and Uncharacterizability by Finite Nmatrices
272(7)
6.7 Some Remarks on Fidel Structures and Swap Structures
279(1)
6.8 The Possible-Translations Semantics
280(13)
6.8.1 Possible-Translations Semantics for Some LFIs
280(2)
6.8.2 A 3-Valued Possible-Translations Semantics for Cila
282(6)
6.8.3 Some Remarks on Possible-Translations Semantics
288(2)
References
290(3)
7 First-Order LFIs
293(52)
7.1 The Logic QmbC
294(2)
7.2 Basic Properties of QmbC
296(6)
7.3 Tarskian Paraconsistent Structures
302(6)
7.4 Soundness Theorem for QmbC
308(2)
7.5 Completeness Theorem for QmbC
310(6)
7.5.1 Henkin Theories
311(1)
7.5.2 Canonical Interpretations
312(4)
7.6 Compactness and Lowenheim-Skolem Theorems for QmbC
316(2)
7.7 QmbC with Equality
318(4)
7.8 First-Order Characterization of Other Quantified LFIs
322(2)
7.9 First-Order LFI1 and the Logic of Quasi-truth
324(11)
7.9.1 Semantics of Partial Structures
324(8)
7.9.2 The Logic QLFI10
332(3)
7.10 First-Order PI and Partial Structures
335(10)
References
343(2)
8 Paraconsistent Set Theory
345(24)
8.1 Antinomic Sets and Paraconsistency
346(3)
8.2 LFIs Predicating on Consistency
349(5)
8.3 Some Extensions of ZFmbC
354(6)
8.4 Inconsistent Sets and Proper Classes
360(3)
8.5 On Models
363(6)
References
365(4)
9 Paraconsistency and Philosophy of Science: Foundations and Perspectives
369(22)
9.1 An Epistemological Understanding of Paraconsistency, and Its Significance for Science
369(2)
9.2 Consistency and Contradiction in Scientific Theories
371(11)
9.2.1 The Heritage of Kant
371(2)
9.2.2 Some Historical Examples
373(1)
9.2.3 The Beginning of Quantum Theory and Paraconsistency
374(1)
9.2.4 Mercury's Orbit and a Non-existent Planet
374(2)
9.2.5 Contradictions in Phlogiston, the Imponderable
376(1)
9.2.6 The Special Theory of Relativity
377(2)
9.2.7 Mathematics, and the Meaning of Objects that Mean Nothing
379(3)
9.3 Quasi-truth and the Reconciliation of Science and Rationality
382(2)
9.4 An Evidence-Based Approach to Paraconsistency
384(1)
9.5 Summing Up
385(6)
References
387(4)
Index 391(6)
Index of Logic Systems 397