Muutke küpsiste eelistusi

E-raamat: Paradoxes and Inconsistent Mathematics

(University of Otago, New Zealand)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Oct-2021
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108999243
  • Formaat - PDF+DRM
  • Hind: 142,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Oct-2021
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108999243

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"In this book, it is argued that the notorious logical paradoxes-the Liar, Russell's, the Sorites-are only the noisiest of many. Contradictions arise in the everyday, from the smallest points, to the widest boundaries. Dialetheic paraconsistency-a formalframework where some contradictions can be true without absurdity-is used as the basis for developing this idea rigorously, from mathematical foundations up. In doing so, this work directly addresses a longstanding open question of how much standard mathematics paraconsistency can capture. The guiding focus is on the question: why are there paradoxes? Details underscore a simple philosophical claim: that paradoxes are found in the ordinary-and that is what makes them so extraordinary. Argument: (1) Thereare true contradictions, both in the foundations of logic and mathematics, and in the everyday world. (2) If the world is inconsistent but not absurd, then the logic underlying our theory of the world ought to be paraconsistent. (3) Paraconsistent logic then must, and can, show that it supports some ordinary reasoning, including proving the motivating paradoxes in elementary mathematics. (4) The basic components of a non-classical picture come into view, and we are positioned to (re)address the question of why there are paradoxes"--

Arvustused

'Zach Weber's Paradoxes and Inconsistent Mathematics is easily one of the most important books in inconsistent mathematics - and contradiction-involving theories in general - since the pioneering books of Chris Mortensen (1995), Graham Priest (1987) and Richard Sylvan (formerly Routley) (1980) Not since said pioneering works have I encountered a more important book on would-be true contradictory theories than Weber's The development of such inconsistent maths from the pioneering ideas to Weber's latest work is as significant as the development from chiseling stone tablets to recent smart phones.' Jc Beall, Notre Dame Philosophical Reviews

Muu info

Why are there paradoxes? This book uses paraconsistent logic to develop the mathematics to find out.
Preface ix
Part I What Are the Paradoxes?
Introduction to an Inconsistent World
3(1)
0.1 The Problem
3(6)
0.2 The Choices
9(13)
0.3 Prospectus: Fixed Points
22(6)
1 Paradoxes; or, "Here in the Presence of an Absurdity"
28(37)
1.1 Sets
28(12)
1.2 Vagueness
40(10)
1.3 Boundaries
50(9)
1.4 Conclusion
59(6)
Part II How to Face the Paradoxes?
2 In Search of a Uniform Solution
65(19)
2.1 In Search of an Explanation
65(1)
2.2 Two Schemas
66(13)
2.3 Stepping Back from the Limits of Thought
79(5)
3 Metatheory and Naive Theory
84(26)
3.1 The Myth of Metatheory
84(12)
3.2 Classical Recapture
96(6)
3.3 Naive Theory
102(8)
4 Prolegomena to Any Future Inconsistent Mathematics
110(41)
4.1 Curry's Paradox
110(10)
4.2 Grisin's Paradox and Identity
120(9)
4.3 Logic
129(16)
Appendix: BCK and DKQ
145(6)
Part III Where Are the Paradoxes?
5 Set Theory
151(38)
5.1 Elements
151(13)
5.2 A Sketch of the Universe
164(16)
5.3 Order
180(5)
Excursus: Partitions, Equivalence Classes, and Cardinality
185(4)
6 Arithmetic
189(23)
6.1 Thither Paraconsistent Arithmetic!
189(4)
6.2 Addition, Multiplication, and Order
193(8)
Excursus: Number Theory
201(6)
6.3 Descent: Inconsistency and Irrationality
207(5)
7 Algebra
212(18)
7.1 Algebra for Inconsistent Mathematics: A Triviality Problem
212(4)
7.2 Vectors
216(5)
7.3 Groups, Rings, and Fields
221(8)
7.4 A Short Conclusion to a Short
Chapter
229(1)
8 Real Analysis
230(26)
8.1 Into the Labyrinth: Real Numbers
230(8)
8.2 Dedekind Cuts
238(8)
8.3 Continuity; or, "Amongst the Ghosts of Departed Quantities"
246(9)
8.4 Out of the Labyrinth: The Topology of a Point
255(1)
9 Topology
256(29)
9.1 Closure Spaces
256(8)
Excursus: Consequence as Closure
264(1)
9.2 Boundaries and Connected Space
265(7)
9.3 Continuity
272(13)
Part IV Why Are There Paradoxes?
10 Ordinary Paradox
285(18)
10.1 Dividing the Universe
285(12)
10.2 The Last Horizon
297(3)
10.3 A Fixed Point Where None Can Be
300(3)
Bibliography 303(16)
Index 319
Zach Weber is Associate Professor of Philosophy at the University of Otago, New Zealand.