Muutke küpsiste eelistusi

E-raamat: Parallel Finite-Difference Time-Domain Method

  • Formaat: 274 pages
  • Ilmumisaeg: 31-Jan-2006
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781596930865
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 274 pages
  • Ilmumisaeg: 31-Jan-2006
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781596930865

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The finite-difference time-domain (FTDT) method has revolutionized antenna design and electromagnetics engineering. This book raises the FDTD method to the next level by empowering it with the vast capabilities of parallel computing. It shows engineers how to exploit the natural parallel properties of FDTD to improve the existing FDTD method and to efficiently solve more complex and large problem sets. Professionals learn how to apply open source software to develop parallel software and hardware to run FDTD in parallel for their projects. The book features hands-on examples that illustrate the power of parallel FDTD and presents practical strategies for carrying out parallel FDTD. This detailed resource provides instructions on downloading, installing, and setting up the required open source software on either Windows or Linux systems, and includes a handy tutorial on parallel programming.
Preface ix
Chapter 1 FDTD Method 1(14)
1.1 FINITE-DIFFERENCE CONCEPT
1(2)
1.2 INTRODUCTION TO FDTD
3(5)
1.3 NUMERICAL DISPERSION
8(2)
1.4 STABILITY ANALYSIS
10(1)
1.5 NONUNIFORM MESH
11(2)
REFERENCES
13(2)
Chapter 2 Boundary Conditions 15(18)
2.1 PEC AND PMC BOUNDARY CONDITIONS
16(2)
2.2 MUR'S ABSORBING BOUNDARY CONDITION
18(3)
2.3 UNSPLIT PML
21(5)
2.4 STRETCHED COORDINATE PML
26(1)
2.5 TIME CONVOLUTION PML
27(5)
REFERENCES
32(1)
Chapter 3 Improvement of the FDTD 33(36)
3.1 CONFORMAL FDTD FOR PEC OBJECTS
33(7)
3.2 CONFORMAL TECHNIQUE FOR DIELECTRIC
40(2)
3.3 ALTERNATING DIRECTION IMPLICIT (ADI) ALGORITHM
42(11)
3.3.1 Update for ADI Equations
43(4)
3.3.2 PML Truncation Techniques for ADI-FDTD
47(2)
3.3.3 Separable Backward-Central Difference
49(4)
3.4 SIMULATION OF DISPERSIVE MEDIA
53(7)
3.4.1 Recursive Convolution
53(5)
3.4.2 Pole Extraction Techniques
58(1)
3.4.3 Simulation of Double-Negative Materials
59(1)
3.5 CIRCUIT ELEMENTS
60(7)
REFERENCES
67(2)
Chapter 4 Excitation Source 69(28)
4.1 INTRODUCTION
69(2)
4.2 TIME SIGNATURE
71(2)
4.3 LOCAL SOURCE
73(5)
4.4 SOURCES FOR UNIFORM TRANSMISSION LINES
78(9)
4.5 POWER INTRODUCED BY LOCAL EXCITATION SOURCES
87(2)
4.6 PHASE DIFFERENCE AND TIME DELAY
89(1)
4.7 PLANE WAVE SOURCES
90(5)
REFERENCES
95(2)
Chapter 5 Data Collection and Post-Processing 97(22)
5.1 TIME-FREQUENCY TRANSFORMATION
97(3)
5.2 MODE EXTRACTION OF TIME SIGNAL
100(3)
5.3 CIRCUIT PARAMETERS
103(3)
5.4 NEAR-TO-FAR-FIELD TRANSFORMATION
106(11)
5.4.1 Basic Approach
106(3)
5.4.2 Far-Field Calculation for Planar Structures
109(4)
5.4.3 Data Compression and Its Application
113(4)
REFERENCES
117(2)
Chapter 6 Introduction to Parallel Computing Systems 119(26)
6.1 ARCHITECTURE OF THE PARALLEL SYSTEM
120(5)
6.1.1 Symmetric Multiprocessor
121(1)
6.1.2 Distributed Shared Memory System
122(1)
6.1.3 Massively Parallel Processing
123(1)
6.1.4 Beowulf PC Cluster
124(1)
6.2 PARALLEL PROGRAMMING TECHNIQUES
125(1)
6.3 MPICH ARCHITECTURE
126(4)
6.4 PARALLEL CODE STRUCTURE
130(5)
6.5 EFFICIENCY ANALYSIS OF PARALLEL FDTD
135(8)
REFERENCES
143(2)
Chapter 7 Parallel FDTD Method 145(34)
7.1 INTRODUCTION TO THE MPI LIBRARY
146(1)
7.2 DATA EXCHANGING TECHNIQUES
147(3)
7.3 DOMAIN DECOMPOSITION TECHNIQUE
150(2)
7.4 IMPLEMENTATION OF THE PARALLEL FDTD METHOD
152(13)
7.4.1 Data Exchange Along the x-Direction
156(6)
7.4.2 Data Exchange Along the y-Direction
162(1)
7.4.3 Data Exchange Along the z-Direction
163(2)
7.5 RESULT COLLECTION
165(5)
7.5.1 Nonuniform Mesh Collection
165(1)
7.5.2 Result Collection
166(1)
7.5.3 Far-Field Collection
167(1)
7.5.4 Surface Current Collection
167(3)
7.6 ASSOCIATED PARALLEL TECHNIQUES
170(4)
7.6.1 Excitation Source
170(3)
7.6.2 Waveguide Matched Load
173(1)
7.6.3 Subgridding Technique
173(1)
7.7 NUMERICAL EXAMPLES
174(4)
7.7.1 Crossed Dipole
175(1)
7.7.2 Circular Horn Antenna
175(1)
7.7.3 Patch Antenna Array Beam Scanning
176(2)
REFERENCES
178(1)
Chapter 8 Illustrative Engineering Applications 179(14)
8.1 FINITE PATCH ANTENNA ARRAY
179(6)
8.2 FINITE CROSSED DIPOLE ANTENNA ARRAY
185(7)
REFERENCES
192(1)
Chapter 9 FDTD Analysis of Bodies of Revolution 193(22)
9.1 BOR/FDTD
193(1)
9.2 UPDATE EQUATIONS FOR BOR/FDTD
194(4)
9.3 PML FOR BOR/FDTD
198(2)
9.4 NEAR-TO-FAR-FIELD TRANSFORMATION IN BOR/FDTD
200(7)
9.5 SINGULAR BOUNDARY IN THE BOR/FDTD
207(1)
9.6 PARTIALLY SYMMETRIC PROBLEM
208(5)
9.6.1 Normally Incident Plane Wave
209(1)
9.6.2 Obliquely Incident Plane Wave
210(3)
REFERENCES
213(2)
Chapter 10 Parallel BORJFDTD 215(14)
10.1 INTRODUCTION TO PARALLEL BOR/FDTD
215(1)
10.2 IMPLEMENTATION OF PARALLEL BOR/FDTD
216(4)
10.3 EFFICIENCY ANALYSIS OF PARALLEL BOR/FDTD
220(2)
10.4 REFLECTOR ANTENNA SYSTEM
222(6)
10.4.1 Reflector Antenna Simulation
222(2)
10.4.2 Combination with Reciprocity Principle
224(2)
10.4.3 Simulation of the Reflector Antenna System
226(2)
REFERENCES
228(1)
Appendix A Introduction to Basic MPI Functions 229(16)
A.1 SELECTED MPICH FUNCTIONS IN FORTRAN
229(7)
A.2 SELECTED MPICH FUNCTIONS IN C/C++
236(5)
A.3 MPI DATA TYPE
241(1)
A.4 MPI OPERATOR
242(1)
A.5 MPICH SETUP
243(1)
A.5.1 MPICH Installation and Configuration for Windows
243(1)
A.5.2 MPICH Installation and Configuration for Linux
243(1)
REFERENCES
244(1)
Appendix B PC Cluster-Building Techniques 245(12)
B.1 SETUP OF A PC CLUSTER FOR THE LINUX SYSTEM
245(8)
B.1.1 PC Cluster System Description
246(1)
B.1.2 Linux Installation
246(2)
B.1.3 Linux System Configuration
248(3)
B.1.4 Developing Tools
251(1)
B.1.5 MPICH
252(1)
B.1.6 Batch Processing Systems
253(1)
B.2 PARALLEL COMPUTING SYSTEM BASED ON WINDOWS
253(1)
B.2.1 System Based on Windows
254(1)
B.2.2 System Based on a Peer Network
254(1)
B.3 USING AN EXISTING BEOWULF PC CLUSTER
254(2)
REFERENCES
256(1)
List of Notations 257(2)
About the Authors 259(2)
Index 261


Wenhua Yu is a Visiting Professor of Department of Electrical Engineering of Pennsylvania State University and a group leader of Electromagnetic Communication Lab. He is a director of Electromagnetic Communication Institute of Communication University of China. Raj Mittra is a Professor in the Electrical Engineering Department of Pennsylvania State University and the Director of the Electromagnetic Communication Laboratory. He has served as the editor of the prominent journal, Transactions of the Antennas and Propagation Society. Professor Mittra won the IEEE Millennium medal in 2000, the IEEE/AP-S Distinguished Achievement Award in 2002, the AP-S Chen-To Tai Distinguished Educator Award in 2004, and the IEEE Electromagnetics Award in 2005. Tao Su has been working as a postdoctoral Research Associate in the Electromagnetics Communications Lab at Pennsylvania State University. He received his M.S. and Ph.D. in electrical engineering from the University of Texas at Austin. He is currently with Sigrity Inc. Yongjun Liu is a Research Associate in Department of Electrical Engineering of Pennsylvania State University. He earned an M.S. in electrical engineering at the Communication University of China. Xiaoling Yang is a Research Associate in Department of Electrical Engineering of Pennsylvania State University. He earned an M.S. in mathematics at Tianjin University, China.