Muutke küpsiste eelistusi

E-raamat: Parallel Processing and Applied Mathematics: 14th International Conference, PPAM 2022, Gdansk, Poland, September 11-14, 2022, Revised Selected Papers, Part I

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This two-volume set, LNCS 13826 and LNCS 13827, constitutes the proceedings of the 14th International Conference on Parallel Processing and Applied Mathematics, PPAM 2022, held in Gdansk, Poland, in September 2022.The 77 regular papers presented in these volumes were selected from 132 submissions. For regular tracks of the conference, 33 papers were selected from 62 submissions.

The papers were organized in topical sections named as follows:

Part I: numerical algorithms and parallel scientific computing; parallel non-numerical algorithms; GPU computing; performance analysis and prediction in HPC systems; scheduling for parallel computing; environments and frameworks for parallel/cloud computing; applications of parallel and distributed computing; soft computing with applications and special session on parallel EVD/SVD and its application in matrix computations.

Part II: 9th Workshop on Language-Based Parallel Programming (WLPP 2022); 6th Workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in New HPC Systems (MAMHYP 2022); first workshop on quantum computing and communication; First Workshop on Applications of Machine Learning and Artificial Intelligence in High Performance Computing (WAML 2022); 4th workshop on applied high performance numerical algorithms for PDEs; 5th minisymposium on HPC applications in physical sciences; 8th minisymposium on high performance computing interval methods; 7th workshop on complex collective systems.
Numerical Algorithms and Parallel Scientific Computing.- How accurate
does Newton have to be?.- General framework for deriving reproducible Krylov
subspace algorithms: BiCGStab case.- A generalized parallel prefix sums
algorithm for arbitrary size array.- Infinite-Precision Inner Product and
Sparse Matrix-Vector Multiplication Using Ozaki Scheme with Dot2 on Manycore
Processors.- Advanced Stochastic Approaches for Applied Computing
in Environmental Modeling.- Parallel Non-numerical Algorithms.- Parallel
Suffix Sorting for Large String Analytics.- Parallel Extremely Randomized
Decision Forests on Graphics Processors for Text Classification.- RDBMS
speculative support improvement by the use of the query hypergraph
representation.- GPU Computing.- Mixed Precision Algebraic Multigrid on
GPUs.- Compact in-memory representation of decision trees in
GPU-accelerated evolutionary induction.- Neural Nets with a Newton Conjugate
Gradient Method on Multiple GPUs.- Performance Analysis and Prediction in
HPC Systems.- Exploring Techniques for the Analysis of Spontaneous
Asynchronicity in MPI-Parallel Applications.- Cost and Performance Analysis
of MPI-based SaaS on the Private Cloud Infrastructure.- Building a
Fine-Grained Analytical Performance Model for Complex Scientific
Simulations.- Evaluation of machine learning techniques for predicting run
times of scientific workflow jobs.- Smart clustering of HPC applications
using similar job detection methods.- Scheduling for Parallel
Computing.- Distributed Work Stealing in a Task-Based Dataflow Runtime.- Task
Scheduler for Heterogeneous Data Centres based on Deep Reinforcement
Learning.- Shisha: Online scheduling of CNN pipelines on heterogeneous
architectures.- Proactive Task Offloading for Load Balancing in Iterative
Applications.- Environments and Frameworks for
Parallel/Cloud Computing.- Language Agnostic Approach for Unification of
Implementation Variants for Different Computing Devices.- High Performance
Dataframes from Parallel Processing Patterns.- Global Access to Legacy
Data-Sets in Multi-Cloud Applications with Onedata.- Applications of Parallel
and Distributed Computing.- MD-Bench: A generic proxy-app toolbox for
state-of-the-art molecular dynamics algorithms.- Breaking Down the Parallel
Performance of GROMACS, a High-Performance Molecular Dynamics
Software.- GPU-based Molecular Dynamics of Turbulent Liquid Flows with
OpenMM.- A novel parallel approach for modeling the dynamics of
aerodynamically interacting particles in turbulent flows.- Reliable energy
measurement on heterogeneous SystemsonChip based environments.- Distributed
Objective Function Evaluation for Optimization of Radiation Therapy Treatment
Plans.- Soft Computing with Applications.- GPU4SNN: GPU-based Acceleration
for Spiking Neural Network Simulations.- Ant System Inspired Heuristic
Optimization of UAVs Deployment for k-Coverage Problem.- Dataset related
experimental investigation of chess position evaluation using a deep neural
network.- Using AI-based edge processing in monitoring the pedestrian
crossing.- Special Session on Parallel EVD/SVD and its Application in Matrix
Computations.- Automatic code selection for the dense symmetric
generalized eigenvalue problem using ATMathCoreLib.- On Relative Accuracy of
the One-Sided Block-Jacobi SVD Algorithm.