Muutke küpsiste eelistusi

E-raamat: Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

  • Formaat: PDF+DRM
  • Sari: Springer Series in Statistics
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781461248422
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Series in Statistics
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781461248422

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

. . ) (under the assumption that the spectral density exists). For this reason, a vast amount of periodical and monographic literature is devoted to the nonparametric statistical problem of estimating the function tJ( T) and especially that of leA) (see, for example, the books [ 4,21,22,26,56,77,137,139,140,]). However, the empirical value t;; of the spectral density I obtained by applying a certain statistical procedure to the observed values of the variables Xl' . . . , X , usually depends in n a complicated manner on the cyclic frequency). . This fact often presents difficulties in applying the obtained estimate t;; of the function I to the solution of specific problems rela ted to the process X . Theref ore, in practice, the t obtained values of the estimator t;; (or an estimator of the covariance function tJ~( T» are almost always "smoothed," i. e. , are approximated by values of a certain sufficiently simple function 1 = 1
I Properties of Maximum Likelihood Function for a Gaussian Time Series.-
1. General Expression for the log Likelihood.-
2. Asymptotic Expression for
the Principal Part of the log Likelihood.-
3. The Asymptotic
Differentiability of Gaussian Distributions with Spectral Densities Separated
from Zero.-
4. The Asymptotic Differentiability of Gaussian Distributions
with Spectral Densities Possessing Fixed Zeros.- Appendix 1.- Appendix 2.-
Appendix
3. Remarks and Bibliography.- II Estimation of Parameters by Means
of P. Whittles Method.-
1. Asymptotic Maximum Likelihood Estimators.-
2.
Properties of Asymptotic Maximum Likelihood Estimators in the Case of
Strictly Positive Spectral Density.-
3. Consistency, Asymptotic Normality,
and Asymptotic Efficiency of the Estimator $$\mathop \theta \limits^ \sim $$
in the Case of Spectral Density Possessing Fixed Zeros.-
4. Examples of
Determination of Asymptotic Maximum Likelihood Estimators.-
5. Asymptotic
Maximum Likelihood Estimator of the Spectrum of Processes Distorted by White
Noise.-
6. Least-Squares Estimation of Parameters of a Spectrum of a Linear
Process.-
7. Estimation by Means of the Whittle Method of Spectrum Parameters
of General Processes Satisfying the Strong Mixing Condition.- Appendix 1.-
Appendix 2.- Appendix
3. Remarks and Bibliography.- III Simplified Estimators
Possessing Nice Asymptotic Properties.-
1. Asymptotic Properties of
Simplified Estimators.-
2. Examples of Preliminary Consistent Estimators.-
3.
Examples of Constructing Simplified Estimators.- Appendix
1. Remarks and
Bibliography.- IV Testing Hypotheses on Spectrum Parameters of a Gaussian
Time Series.-
1. Testing Simple Hypotheses.-
2. Testing Composite Hypotheses
(The Case of a Sequence of General Asymptotically
DifferentiableExperiments).-
3. Testing of Composite Hypothesis about a
Parameter of a Spectrum of a Gaussian Time Series.- Appendix
1. Remarks and
Bibliography.- V Goodness-of-Fit Tests for Testing the Hypothesis about the
Spectrum of Linear Processes.-
1. A Class of Goodness-of-Fit Tests for
Testing a Simple Hypothesis about the Spectrum of Linear Processes.-
2. X2
Test for Testing a Simple Hypothesis about the Spectrum of a Linear Process.-
3. Goodness-of-Fit Test for Testing Composite Hypotheses about the Spectrum
of a Linear Process.- Appendix
1. Remarks and Bibliography.