Muutke küpsiste eelistusi

E-raamat: Parametric Lambda Calculus: A Metamodel for Computation

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book contains a completely new presentation of classical results in the field of Lambda Calculus, together with new results. The text is unique in that it presents a new calculus (Parametric Lambda Calculus) which can be instantiated to obtain already known lambda-calculi. Some properties, which in the literature have been proved separately for different calculi, can be proved once for the Parametric one. The lambda calculi are presented from a Computer Science point of view, with a particular emphasis on their semantics, both operational and denotational.

The parametric lambda calculus is a metamodel for reasoning about various kinds of computations. Its syntactic definition is based on the notion of "sets of input values", and different lambda calculi can be obtained from it by instantiating such sets in suitable ways. The parametric lambda calculus is used as a tool for presenting in a uniform way basic notions of programming languages, and for studying with a uniform approach some lambda calculi modeling different kinds of computations, such as call-by-name, both in its lazy and non-lazy versions, and call-by-value. The parametric presentation allows us both to prove in one step all the fundamental properties of different calculi, and to compare them with each other. The book includes some classical results in the field of lambda calculi, but completely rephrased using the parametric approach, together with some new results. The lambda calculi are presented from a computer science viewpoint, with particular emphasis on their semantics, both operational and denotational.This book is dedicated to researchers, and can be used as a textbook for masters or Ph.D. courses on the foundations of computer science.
Part I. Syntax
The Parametric λ-Calculus
3(22)
The Language of λ-Terms
3(3)
The λΔ-Calculus
6(15)
Proof of Confluence and Standardization Theorems
14(7)
Δ-Theories
21(4)
The Call-by-Name λ-Calculus
25(10)
The Syntax of λΛ-Calculus
25(10)
Proof of Λ-Solvability Theorem
27(1)
Proof of Bohm's Theorem
28(7)
The Call-by-Value λ-Calculus
35(26)
The Syntax of the λΓ-Calculus
35(23)
Ξl-Confluence and Ξl-Standardization
41(2)
Proof of Potential Γ-Valuability and Γ-Solvability Theorems
43(6)
Proof of Γ-Separability Theorem
49(9)
Potentially Γ-Valuable Terms and Λ-Reduction
58(3)
Further Reading
61(4)
Part II. Operational Semantics
Parametric Operational Semantics
65(8)
The Universal Δ-Reduction Machine
70(3)
Call-by-Name Operational Semantics
73(16)
H-Operational Semantics
73(4)
N-Operational Semantics
77(4)
L-Operational Semantics
81(8)
An Example
85(4)
Call-by-Value Operational Semantics
89(6)
V-Operational Semantics
89(6)
An Example
93(2)
Operational Extensionality
95(6)
Operational Semantics and Extensionality
95(6)
Head-Discriminability
99(2)
Further Reading
101(4)
Part III. Denotational Semantics
λΔ-Models
105(14)
Filter λΔ-Models
108(11)
Call-by-Name Denotational Semantics
119(62)
The Model H
119(25)
The ≤∞-Intersection Relation
129(3)
Proof of the H-Approximation Theorem
132(4)
Proof of Semiseparability, H-Discriminability and H-Characterization Theorems
136(8)
The Model N
144(18)
The ≤∞-Intersection Relation
151(3)
Proof of N-Approximation Theorem
154(3)
Proof of N-Discriminability and N-Characterization Theorems
157(5)
The Model L
162(10)
Proof of L-Approximation Theorem
168(2)
Proof of Theorems 11.3.15 and 11.3.16
170(2)
A Fully Abstract Model for the L-Operational Semantics
172(6)
Crossing Models
178(3)
The Model H
178(1)
The Model N
179(1)
The Model L
179(2)
Call-by-Value Denotational Semantics
181(26)
The Model V
181(20)
The ≤√-Intersection Relation
190(2)
Proof of Theorem 12.1.6
192(3)
Proof of the V-Approximation Theorem
195(3)
Proof of Theorems 12.1.24 and 12.1.25
198(3)
A Fully Abstract Model for the V-Operational Semantics
201(6)
Filter λΔ-Models and Domains
207(14)
Domains
207(14)
H as Domain
214(2)
N as Domain
216(1)
L as Domain
217(1)
V as Domain
218(1)
Another Domain
219(2)
Further Reading
221(4)
Part IV. Computational Power
Preliminaries
225(8)
Kleene's Recursive Functions
225(2)
Representing Data Structures
227(6)
Representing Functions
233(8)
Call-by-Name Computational Completeness
233(4)
Call-by-Value Computational Completeness
237(2)
Historical Remarks
239(2)
Bibliography 241(6)
Index 247


Simona Ronchi Della Rocca: Full Professor of Foundations of Computer Science since 1987, Member of the Editorial Board of TOCL (ACM Transactions on Computational Logic), Member of the Organizing Committee of LICS (Logic in Computer Science), Member of the Accademy of Sciences of Torino



Luca Paolini: PhD student in Computer Science and Discrete Mathematics, Università di Genova and Université de la Mediterranée.



 



.