Muutke küpsiste eelistusi

E-raamat: Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications

  • Formaat: PDF+DRM
  • Sari: SpringerBriefs in Statistics
  • Ilmumisaeg: 11-Feb-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319263113
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: SpringerBriefs in Statistics
  • Ilmumisaeg: 11-Feb-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319263113

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests. The models are simple to understand and interpret and provide a useful tool to describe the global dynamics of the landmark configurations. However, because of the non-Euclidean nature of shape spaces, distributions in shape spaces are not straightforward to obtain.

The book explores the use of the Gaussian distribution in the configuration space, with similarity transformations integrated out. Specifically, it works with the offset-normal shape distribution as a probability model for statistical inference on a sample of a temporal sequence of landmark configurations. This enables inference for Gaussian processes from configurations onto the shape space.

The book is divided in two parts, with the first three chapters covering material on the offset-normal shape distribution, and the remaining chapters covering the theory of NonParametric Combination (NPC) tests. The chapters offer a collection of applications which are bound together by the theme of this book.

They refer to the analysis of data from the FG-NET (Face and Gesture Recognition Research Network) database with facial expressions. For these data, it may be desirable to provide a description of the dynamics of the expressions, or testing whether there is a difference between the dynamics of two facial expressions or testing which of the landmarks are more informative in explaining the pattern of an expression.

Arvustused

                                                                                                           

Part I Offset Normal Distribution for Dynamic Shapes
1 Basic Concepts and Definitions
3(12)
1.1 Landmark Coordinates and the Configuration Space
3(2)
1.2 Shape Space
5(2)
1.3 Coordinate Systems in Two Dimensions
7(8)
1.3.1 Kendall's Shape Coordinates
7(1)
1.3.2 Bookstein Coordinates
7(2)
1.3.3 Procrustes Coordinates
9(4)
References
13(2)
2 Shape Inference and the Offset-Normal Distribution
15(18)
2.1 Introduction
15(1)
2.2 The Gaussian Distribution in the Configuration Space
16(3)
2.3 The Gaussian Distribution in the Pre-form Space
19(1)
2.4 The Offset-Normal Shape Distribution
19(3)
2.5 EM Algorithm for Estimating μ and Σ
22(4)
2.5.1 EM for Complex Covariance
24(2)
2.5.2 Cyclic Markov and Isotropic Covariances
26(1)
2.6 Data Analysis: The FG-NET Data
26(7)
References
30(3)
3 Dynamic Shape Analysis Through the Offset-Normal Distribution
33(26)
3.1 The Offset-Normal Distribution in a Dynamic Setting
34(3)
3.1.1 The Probability Density Function
35(2)
3.2 EM Algorithm for Estimating μ and Σ
37(4)
3.3 Separable Covariance Structure
41(7)
3.3.1 EM for the Offset Shape Distribution of a Matrix-Variate Normal Distribution
42(2)
3.3.2 Complex Landmark Covariance Structures
44(1)
3.3.3 A Simulation Study
45(2)
3.3.4 Temporal Independence
47(1)
3.4 Offset Normal Distribution and Shape Polynomial Regression for Complex Covariance Structure
48(3)
3.4.1 Modeling the Dynamics of Facial Expressions by Shape Regression
50(1)
3.5 Matching Symmetry
51(2)
3.6 Mixture Models for Classification
53(6)
References
55(4)
Part II Combination-Based Permutation Tests for Shape Analysis
4 Parametric and Non-parametric Testing of Mean Shapes
59(14)
4.1 Inferential Procedures for the Analysis of Shapes
59(2)
4.2 NPC Approach in Shape Analysis
61(8)
4.2.1 Brief Description of the Nonparametric Methodology
61(3)
4.2.2 A Two Independent Sample Problem with Landmark Data
64(2)
4.2.3 A Suitable Algorithm
66(3)
4.3 General Framework for Longitudinal Data Analysis in NPC Framework
69(4)
References
71(2)
5 Applications of NPC Methodology
73(32)
5.1 Introduction
73(2)
5.2 The Data
75(1)
5.3 NPC Methodology for Longitudinal Data
76(18)
5.4 Introduction on Paired Landmark Data
94(2)
5.5 Evaluating Symmetry Within Happy Facial Expression: Object Symmetry
96(9)
References
102(3)
Appendix A Shape Inference and the Offset-Normal Distribution
105(8)
A.1 EM Algorithm for Estimating μ and Σ
105(2)
A.2 EM for Complex Covariance
107(6)
Reference
111(2)
Index 113
Chiara Brombin is Assistant Professor in Statistics at the Faculty of Psychology (University Vita-Salute San Raffaele, Milano) and national coordinator of the research project FIRB 2012 (RBFR12VHR7) "Interpreting emotions: a computational tool integrating facial expressions and biosignals based on shape analysis and Bayesian networks". Her research interests focus on applied statistics and include nonparametric permutation tests, statistical shape analysis, multivariate statistics, linear mixed-effect models, joint models for longitudinal and time-to-event data.





Luigi Salmaso is Full Professor of Statistics at the Department of Management and Engineering at University of Padova. His research interests include biostatistics, statistical methods for marketing research, design of experiments, nonparametric statistics and agricultural statistics. Specific topics of interests include permutation tests, resampling techniques and ranking and selection methods.





Luigi Ippoliti is an Associate Professor in Statistics at the University "G. d'Annunzio"of Chieti Pescara, Italy. His research activity is mainly focused on the analysis of multivariate processes with temporal, spatial and spatio-temporal structures with interests in economic, environmental and Neuro-Physiological applications. 





Specific topics of interests include hierarchical spatio-temporal models, image processing, functional data analysis and dynamic shape analysis.





Lara Fontanella is a Researcher in Statistics at the University G. d'Annunzio of Chieti-Pescara, Italy. Her research interests focus mainly on Latent Variable models and Statistical Analysis of Dynamic Shapes, with applications to environmental, neuro-physiological, social and economic data.





Caterina Fusilli holds a Bachelor's Degree in Statistics and Information Technologies and a Master Degree in Statistics for Biomedicine, Environment and Technology from the University "La Sapienza" of Rome. She also received the Ph.D degree in Economics and Statistics from the University "G. d'Annunzio" of Chieti - Pescara. She is a postdoctoral research fellow in the Bioinformatic unit at the IRCCS Casa Sollievo della Sofferenza - Mendel Institute (Rome). Her research interests include the Next-Generation Sequencing, Bioinformatics, Shape Analysis, Cluster Analysis and Finite Mixture Models.