Muutke küpsiste eelistusi

E-raamat: Particle Detectors

(Budker Institute of Nuclear Physics, Novosibirsk, Russia), (Universität-Gesamthochschule Siegen, Germany)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Reference on particle detectors for graduate students and researchers in particle physics.

The scope of the detection techniques in particle detectors is very wide, depending on the aim of the measurement. Detectors cover the measurement of energies from the very low to the highest of energies observed in cosmic rays. Describing the current state of the art instrumentation for experiments in high energy physics and astroparticle physics, this new edition describes track detectors, calorimeters, particle identification, neutrino detectors, momentum measurement, electronics, and data analysis. It also discusses up-to-date applications of these detectors in other fields such as nuclear medicine, radiation protection and environmental science. Problem sets have been added to each chapter and additional instructive material has been provided, making this an excellent reference for graduate students and researchers in particle physics.

Arvustused

Review of the hardback: From reviews of the first edition: ' an excellent volume The level of detail, especially in the treatment of the physics underlying detector operation, makes it well suited for use by graduate students. Furthermore, its broad coverage, backed by a very extensive list of references, should satisfy the needs of more experienced researchers. I for one anticipate consulting it regularly in the future.' Physics World Bob Brown Review of the hardback: ' an excellent book for graduate students and researchers in experimental particle physics, and for university staff teaching some undergraduate courses Contemporary Physics Peter I. P. Kalmus Review of the hardback: Professor Grupen's career has taken him from cosmic ray muons in the 1970s to CERN's ALEPH experiment today, and in writing the book nothing has been left out.' CERN Courier James Gillies Review of the hardback: ' a comprehensive treatise.' Aslib Book Guide Review of the hardback: 'clearly laid out in textbook style, with a set of problems at the end of each chapter and solutions at the back. Fully referenced and generously indexed, it also includes five appendices covering fundamental constants, units, relevant material properties, decay schemes and Monte Carlo generators, which all go to make it a fully rounded reference work.' The Observatory

Muu info

This book is a reference on particle detectors for graduate students and researchers in particle physics.
Preface to the second edition xiii
Preface to the first edition xvi
Introduction xx
Interactions of particles and radiation with matter
1(55)
Interactions of charged particles
2(29)
Energy loss by ionisation and excitation
3(9)
Channelling
12(1)
Ionisation yield
13(5)
Multiple scattering
18(1)
Bremsstrahlung
19(3)
Direct electron-pair production
22(2)
Energy loss by photonuclear interactions
24(1)
Total energy loss
24(2)
Energy--range relations for charged particles
26(2)
Synchrotron-radiation losses
28(3)
Interactions of photons
31(10)
Photoelectric effect
32(1)
Compton effect
33(3)
Pair production
36(2)
Total photon absorption cross section
38(3)
Strong interactions of hadrons
41(2)
Drift and diffusion in gases
43(6)
Problems
49(7)
References
51(5)
Characteristic properties of detectors
56(15)
Resolutions and basic statistics
56(6)
Characteristic times
62(1)
Dead-time corrections
63(1)
Random coincidences
63(2)
Efficiencies
65(4)
Problems
69(2)
References
69(2)
Units of radiation measurements and radiation sources
71(11)
Units of radiation measurement
71(5)
Radiation sources
76(3)
Problems
79(3)
References
81(1)
Accelerators
82(8)
Problems
87(3)
References
88(2)
Main physical phenomena used for particle detection and basic counter types
90(70)
Ionisation counters
90(20)
Ionisation counters without amplification
90(7)
Proportional counters
97(7)
Geiger counters
104(2)
Streamer tubes
106(4)
Ionisation detectors with liquids
110(2)
Solid-state ionisation counters
112(10)
Scintillation counters
122(8)
Photomultipliers and photodiodes
130(12)
Cherenkov counters
142(4)
Transition-radiation detectors (TRD)
146(4)
Problems
150(10)
References
151(9)
Historical track detectors
160(26)
Cloud chambers
160(3)
Bubble chambers
163(4)
Streamer chambers
167(2)
Neon-flash-tube chamber
169(1)
Spark chambers
170(3)
Nuclear emulsions
173(2)
Silver-halide crystals
175(1)
X-ray films
176(1)
Thermoluminescence detectors
177(1)
Radiophotoluminescence detectors
178(1)
Plastic detectors
179(1)
Problems
180(6)
References
181(5)
Track detectors
186(44)
Multiwire proportional chambers
186(5)
Planar drift chambers
191(6)
Cylindrical wire chambers
197(15)
Cylindrical proportional and drift chambers
198(7)
Jet drift chambers
205(3)
Time-projection chambers (TPCs)
208(4)
Micropattern gaseous detectors
212(3)
Semiconductor track detectors
215(4)
Scintillating fibre trackers
219(3)
Problems
222(8)
References
223(7)
Calorimetry
230(43)
Electromagnetic calorimeters
231(18)
Electron--photon cascades
231(7)
Homogeneous calorimeters
238(6)
Sampling calorimeters
244(5)
Hadron calorimeters
249(9)
Calibration and monitoring of calorimeters
258(3)
Cryogenic calorimeters
261(6)
Problems
267(6)
References
267(6)
Particle identification
273(34)
Charged-particle identification
274(18)
Time-of-flight counters
274(4)
Identification by ionisation losses
278(3)
Identification using Cherenkov radiation
281(8)
Transition-radiation detectors
289(3)
Particle identification with calorimeters
292(4)
Neutron detection
296(5)
Problems
301(6)
References
302(5)
Neutrino detectors
307(20)
Neutrino sources
307(2)
Neutrino reactions
309(1)
Some historical remarks on neutrino detection
310(1)
Neutrino detectors
311(12)
Problems
323(4)
References
324(3)
Momentum measurement and muon detection
327(19)
Magnetic spectrometers for fixed-target experiments
328(8)
Magnetic spectrometers for special applications
336(6)
Problems
342(4)
References
344(2)
Ageing and radiation effects
346(14)
Ageing effects in gaseous detectors
346(6)
Radiation hardness of scintillators
352(2)
Radiation hardness of Cherenkov counters
354(1)
Radiation hardness of silicon detectors
355(2)
Problems
357(3)
References
358(2)
Example of a general-purpose detector: Belle
360(30)
Detector components
361(18)
The silicon vertex detector (SVD)
362(2)
The central drift chamber (CDC)
364(3)
The aerogel Cherenkov-counter system (ACC)
367(2)
Time-of-flight counters (TOF)
369(3)
Electromagnetic calorimetry (ECL)
372(5)
The KL and muon detection system (KLM)
377(2)
Particle identification
379(3)
Data-acquisition electronics and trigger system
382(3)
Luminosity measurement and the detector performance
385(2)
Problems
387(3)
References
388(2)
Electronics
390(46)
Introduction
390(1)
Example systems
391(4)
Detection limits
395(2)
Acquiring the sensor signal
397(5)
Signal integration
397(5)
Signal processing
402(1)
Electronic noise
403(2)
Thermal (Johnson) noise
404(1)
Shot noise
405(1)
Signal-to-noise ratio versus sensor capacitance
405(1)
Pulse shaping
406(3)
Noise analysis of a detector and front-end amplifier
409(6)
Timing measurements
415(2)
Digital electronics
417(4)
Logic elements
417(2)
Propagation delays and power dissipation
419(2)
Logic arrays
421(1)
Analogue-to-digital conversion
421(4)
Time-to-digital converters (TDCs)
425(2)
Signal transmission
427(2)
Interference and pickup
429(4)
Pickup mechanisms
429(2)
Remedial techniques
431(2)
Conclusion
433(1)
Problems
433(3)
References
435(1)
Data analysis
436(30)
Introduction
436(1)
Reconstruction of raw detector data
436(3)
Analysis challenges
439(2)
Analysis building blocks
441(11)
Charged-particle trajectories
442(4)
Energy reconstruction
446(1)
Quark jets
447(2)
Stable-particle identification
449(1)
Displaced vertices and unstable-particle reconstruction
449(3)
Analysis components
452(7)
Monte Carlo event generators
452(1)
Simulation of detector response
453(1)
Beyond the detector
453(2)
Multivariate techniques
455(4)
Analysis in action
459(3)
Problems
462(4)
References
462(4)
Applications of particle detectors outside particle physics
466(44)
Radiation camera
467(4)
Imaging of blood vessels
471(4)
Tumour therapy with particle beams
475(5)
Surface investigations with slow protons
480(2)
Gamma- and neutron-backscatter measurements
482(2)
Tribology
484(2)
Identification of isotopes in radioactive fallout
486(1)
Search for hidden chambers in pyramids
487(2)
Random-number generators using radioactive decays
489(3)
Experimental proof of ve ≠ vμ
492(3)
Detector telescope for γ-ray astronomy
495(2)
Measurement of extensive air showers with the Fly's Eye detector
497(3)
Search for proton decay with water Cherenkov counters
500(1)
Radio-carbon dating
501(2)
Accident dosimetry
503(1)
Problems
503(7)
References
505(5)
Resume
510(67)
Glossary
512(21)
Solutions
533(44)
Appendix 1: Table of fundamental physical constants 577(3)
Appendix 2: Definition and conversion of physical units 580(2)
Appendix 3: Properties of pure and composite materials 582(2)
Appendix 4: Monte Carlo event generators 584(7)
Appendix 5: Decay-level schemes 591(8)
Index 599
Claus Grupen is Professor Dr. in the Department of Physics at Siegen University. He was awarded the Special High Energy and Particle Physics Prize of the European Physical Society for establishing the existence of the gluon in independent and simultaneous ways, as member of the PLUTO experiment at DESY in 1995. Boris Shwartz is a Leading Researcher at the Budker Institute of Nuclear Physics. He has worked on the development and construction of the detectors used in several projects, including the KEDR and CMD-2 detectors, WASA experiment, and the Belle collaboration.