Muutke küpsiste eelistusi

E-raamat: Particle Methods For Multi-scale And Multi-physics

(Peking Univ, China), (University Of Cincinnati, Usa)
  • Formaat: 400 pages
  • Ilmumisaeg: 28-Dec-2015
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814571715
  • Formaat - EPUB+DRM
  • Hind: 63,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 400 pages
  • Ilmumisaeg: 28-Dec-2015
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814571715

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --

This is the book first-ever published to date that comprehensively and systematically addresses the major particle methods for modelling different problems in engineering and sciences. It covers different particle methods from small scales to continuum scales, with emphasis focused on three attractive and most popular meshfree particle methods: molecular dynamics, dissipative particle dynamics, and smoothed particle hydrodynamics.The book covers theoretical background, numerical techniques, code implementation, and many interesting, novel, and practical applications in 1) microfluidics and micro drop dynamics, 2) environmental and geophysical flows, 3) coast hydrodynamics and offshore engineering, and 4) high energy phenomena such as explosion and impact. Example source codes are also provided to make this book friendly and easy to read.
Preface vii
Acknowledgments xiii
1 Introduction
1(42)
1.1 Computer modeling
1(5)
1.1.1 Computer modeling and its general solution procedure
1(3)
1.1.2 Computer modeling, theory and experiment
4(1)
1.1.3 Verification and validation
5(1)
1.2 Governing equations
6(8)
1.2.1 Eulerian and Lagrangian descriptions
7(1)
1.2.2 Control volume, surface and velocity divergence
8(2)
1.2.3 Navier-Stokes equations in Lagrangian frame
10(4)
1.3 Grid-based methods
14(7)
1.3.1 Lagrangian grid
16(2)
1.3.2 Eulerian grid
18(2)
1.3.3 Combined Lagrangian and Eulerian grids
20(1)
1.3.4 Limitations of the grid-based methods
20(1)
1.4 Meshfree methods
21(8)
1.4.1 Types of methods
21(2)
1.4.2 Applications
23(3)
1.4.3 Particle methods -- a special class of meshfree methods
26(3)
1.5 Solution strategy of particle methods
29(14)
1.5.1 Particle representation
30(1)
1.5.2 Particle approximation
31(2)
1.5.3 Solution procedure
33(1)
References
34(9)
2 Molecular Dynamics
43(40)
2.1 Introduction
44(2)
2.2 Classic Molecular Dynamics
46(10)
2.2.1 Equations of motion
46(1)
2.2.2 Force potential function
47(3)
2.2.3 Time integration
50(1)
2.2.4 Periodic boundary treatment
51(1)
2.2.5 Classic MD simulation implementation
52(2)
2.2.6 MD simulation of Poiseuille flow
54(2)
2.3 Coupling MD with macro scale methods
56(6)
2.3.1 An overview
56(2)
2.3.2 Coupling MD with FEM
58(1)
2.3.3 Coupling MD with FDM
59(1)
2.3.4 Coupling MD with SPH
60(2)
2.4 Molecular dynamics simulation of peptide-CNT interaction
62(15)
2.4.1 General overview of CNTs
62(2)
2.4.2 General overview of proteins and peptides
64(2)
2.4.3 Setup of the MD simulation of peptide-CNT interaction
66(3)
2.4.4 Results and discussions
69(8)
2.5 Concluding remarks
77(6)
References
78(5)
3 Dissipative Particle Dynamics --- Methodology
83(44)
3.1 Introduction
84(3)
3.2 Basic concepts of dissipative particle dynamics
87(9)
3.2.1 Coarse-graining
87(1)
3.2.2 Governing equations
88(3)
3.2.3 Time integration
91(1)
3.2.4 Stress tensor
92(1)
3.2.5 Determination of coefficients
92(2)
3.2.6 Computational procedure
94(2)
3.3 Numerical aspects
96(14)
3.3.1 Assessment of dynamic properties
96(3)
3.3.2 Solid boundary treatment
99(3)
3.3.3 Conservative interaction potential
102(7)
3.3.4 Spring-bead chain models
109(1)
3.4 Validation of the DPD method
110(10)
3.4.1 Binary mixture
110(3)
3.4.2 Poiseuille flow
113(3)
3.4.3 Fully saturated flow through porous media
116(4)
3.5 Concluding remarks
120(7)
References
122(5)
4 Dissipative Particle Dynamics --- Applications
127(64)
4.1 Introduction
127(2)
4.2 Micro drop dynamics
129(12)
4.2.1 Formation of drop with co-existing liquid-vapor
131(7)
4.2.2 Large-amplitude oscillation of a liquid drop
138(1)
4.2.3 Controlled drug delivery
139(2)
4.3 Multiphase flows in pore-scale fracture network and porous media
141(18)
4.3.1 Multiphase flows in micro channel and fractures
143(9)
4.3.2 Multiphase flows in porous media
152(7)
4.4 Movement and suspension of macromolecules in micro channels
159(19)
4.4.1 Straight micro channel
163(3)
4.4.2 Contracted micro channel
166(1)
4.4.3 Inclined micro channel
167(2)
4.4.4 Grooved micro-channel
169(9)
4.5 Movement and deformation of single cells
178(5)
4.6 Concluding remarks
183(8)
References
184(7)
5 Smoothed Particle Hydrodynamics --- Methodology
191(70)
5.1 History and development
192(4)
5.2 Basic concepts of SPH approximation
196(11)
5.2.1 Kernel approximation of a function
196(2)
5.2.2 Kernel approximation of derivatives
198(3)
5.2.3 Particle approximation
201(2)
5.2.4 Techniques for deriving SPH formulations
203(2)
5.2.5 SPH formulations for the Navier-Stokes (N-S) equations
205(2)
5.3 SPH smoothing function
207(10)
5.3.1 Review on commonly used smoothing functions
207(5)
5.3.2 Generalizing constructing conditions
212(2)
5.3.3 Constructing SPH smoothing functions
214(3)
5.4 Numerical aspects of SPH
217(7)
5.4.1 Artificial viscosity
217(2)
5.4.2 Artificial heat
219(1)
5.4.3 Smoothing length
220(1)
5.4.4 Symmetrization of particle interaction
221(1)
5.4.5 Tensile instability
222(2)
5.5 Consistency of the SPH method
224(28)
5.5.1 Consistency in kernel approximation (kernel consistency)
224(2)
5.5.2 Consistency in particle approximation (particle consistency)
226(2)
5.5.3 Review on approaches for restoring consistency
228(3)
5.5.4 A general approach to restore particle consistency
231(2)
5.5.5 Finite particle method
233(6)
5.5.6 A comparative study of particle consistency
239(12)
5.5.7 Consistency vs. stability
251(1)
5.6 Concluding remarks
252(9)
References
253(8)
6 Smoothed Particle Hydrodynamics --- Applications
261(92)
6.1 Introduction
262(4)
6.1.1 Review on SPH applications
262(2)
6.1.2 Applications to hydrodynamics and ocean engineering
264(2)
6.2 Governing equations
266(6)
6.2.1 Governing equation for viscous incompressible fluid flow
266(1)
6.2.2 Governing equation for moving rigid body
267(1)
6.2.3 SPH equations of motion
268(1)
6.2.4 Density and kernel gradient correction
269(3)
6.3 Modeling incompressible flows in SPH
272(16)
6.3.1 Weakly compressible SPH (WCSPH) model
273(2)
6.3.2 Incompressible SPH (ISPH) algorithm
275(3)
6.3.3 Comparisons of WCSPH and ISPH
278(10)
6.4 Free surface flows
288(10)
6.4.1 Dam breaking against a vertical wall
289(5)
6.4.2 Dam breaking against a sharp-edged obstacle
294(1)
6.4.3 The movement of an elliptical cylinder near free surface
294(4)
6.5 Liquid sloshing
298(14)
6.5.1 Liquid sloshing under horizontal excitation
300(2)
6.5.2 Liquid sloshing with a middle baffle
302(2)
6.5.3 Liquid sloshing due to the pitch motion of a rectangular tank
304(4)
6.5.4 Ballast water
308(4)
6.6 Water entry and exit
312(10)
6.6.1 Water exit of a cylinder
312(3)
6.6.2 Sinking of a submerged cylinder
315(2)
6.6.3 Free falling of a cylinder
317(2)
6.6.4 Underwater launch
319(3)
6.7 Oil spill and boom movement
322(6)
6.7.1 Effects of oil type
325(1)
6.7.2 Effects of boom velocity
326(1)
6.7.3 Effects of skirt angle
326(1)
6.7.4 Effects of waves
327(1)
6.8 Hydro-elasticity
328(7)
6.8.1 Head-on collision of two rubber rings
329(2)
6.8.2 Dam break with an elastic gate
331(2)
6.8.3 Water impact onto a forefront elastic plate
333(2)
6.9 Concluding remarks
335(18)
References
337(16)
7 Three Typical Particle Methods
353(20)
7.1 Particle-in-cell method
354(3)
7.1.1 History and development
354(1)
7.1.2 Basic concept
354(2)
7.1.3 Implementation procedure
356(1)
7.1.4 Comparison of SPH and PIC
357(1)
7.2 Material point method
357(6)
7.2.1 History and development
357(1)
7.2.2 Basic concept
358(3)
7.2.3 Implementation procedure
361(1)
7.2.4 Comparison of SPH and MPM
362(1)
7.3 Moving-particle semi-implicit method
363(6)
7.3.1 History and development
363(1)
7.3.2 Basic concept
364(3)
7.3.3 Implementation procedure
367(1)
7.3.4 Comparison of SPH and MPS
368(1)
7.4 Concluding remarks
369(4)
References
370(3)
Index 373