Muutke küpsiste eelistusi

E-raamat: Partitions: Optimality And Clustering - Vol Ii: Multi-parameter

(Nat'l Chiao-tung Univ, Taiwan), (Academia Sicina, Taiwan), (Technion, Israel)
  • Formaat: 304 pages
  • Sari: Series On Applied Mathematics 20
  • Ilmumisaeg: 24-Apr-2013
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814412360
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 38,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 304 pages
  • Sari: Series On Applied Mathematics 20
  • Ilmumisaeg: 24-Apr-2013
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814412360
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The need for optimal partition arises from many real-world problems involving the distribution of limited resources to many users. The “clustering” problem, which has recently received a lot of attention, is a special case of optimal partitioning. This book is the first attempt to collect all theoretical developments of optimal partitions, many of them derived by the authors, in an accessible place for easy reference. Much more than simply collecting the results, the book provides a general framework to unify these results and present them in an organized fashion.Many well-known practical problems of optimal partitions are dealt with. The authors show how they can be solved using the theory — or why they cannot be. These problems include: allocation of components to maximize system reliability; experiment design to identify defectives; design of circuit card library and of blood analyzer lines; abstraction of finite state machines and assignment of cache items to pages; the division of property and partition bargaining as well as touching on those well-known research areas such as scheduling, inventory, nearest neighbor assignment, the traveling salesman problem, vehicle routing, and graph partitions. The authors elucidate why the last three problems cannot be solved in the context of the theory.
Preface ix
1 Bounded-Shape Sum-Partition Problems: Polyhedral Approach 1(50)
1.1 Linear Objective: Solution by LP
2(12)
1.2 Enumerating Vertices of the Partition Polytopes and Corresponding Partitions Using Edge-Directions
14(7)
1.3 Representation, Characterization and Enumeration of Vertices of Partition Polytopes: Distinct Partitioned Vectors
21(17)
1.4 Representation, Characterization and Enumeration of Vertices of Partition Polytopes: General Case
38(13)
2 Constrained-Shape and Single-Size Sum-Partition Problems: Polynomial Approach 51(70)
2.1 Constrained-Shape Partition Polytopes and (Almost-) Separable Partitions
52(14)
2.2 Enumerating Separable and Limit-Separable Partitions of Constrained-Shape
66(25)
2.3 Single-Size Partition Polytopes and Cone-Separable Partitions
91(12)
2.4 Enumerating (Limit-)Cone-Separable Partitions
103(18)
3 Partitions over Multi-Parameter Spaces: Combinatorial Structure 121(54)
3.1 Properties of Partitions
122(14)
3.2 Counting and Enumerating Partition Classes of Single-Size
136(21)
3.3 Consistency and Sortability of Particular Partition Properties
157(18)
4 Clustering Problems over Multi-parameter Spaces 175(38)
4.1 Geometric Properties of Optimal Partitions
176(19)
4.2 Geometric Properties of Optimal Partitions for d = 2
195(18)
5 Sum-Multipartition Problems over Single-Parameter Spaces 213(36)
5.1 Multipartitions
214(3)
5.2 Single-Multishape Multipartition Polytopes
217(9)
5.3 Constrained-Multishape Multipartition Polytopes
226(8)
5.4 Combinatorial Properties of Multipartitions
234(7)
5.5 Constrained-Multishape Multipartition Problems with Asymmetric Schur Convex Objective: Optimization over Multipartition Polytopes
241(5)
5.6 Sum Multipartition Problems: Explicit Solutions
246(3)
6 Applications 249(34)
6.1 Assembly of Systems
249(3)
6.2 Group Testing
252(3)
6.3 Circuit Card Library
255(2)
6.4 Clustering
257(3)
6.5 Abstraction of Finite State Machines
260(2)
6.6 Multischeduling
262(3)
6.7 Cache Assignment
265(3)
6.8 The Blood Analyzer Problem
268(1)
6.9 Joint Replenishment of Inventory
269(5)
6.10 Statistical Hypothesis Testing
274(1)
6.11 Nearest Neighbor Assignment
275(1)
6.12 Graph Partitions
276(1)
6.13 The Traveling Salesman Problem
277(1)
6.14 Vehicle Routing
277(1)
6.15 Division of Property
277(3)
6.16 The Consolidation of Farmland
280(3)
Bibliography 283(6)
Index 289