Muutke küpsiste eelistusi

E-raamat: Partitions: Optimality And Clustering - Volume I: Single-parameter

(Nat'l Chiao-tung Univ, Taiwan), (Technion, Israel)
  • Formaat: 364 pages
  • Sari: Series On Applied Mathematics 19
  • Ilmumisaeg: 09-Dec-2011
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814390996
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 49,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 364 pages
  • Sari: Series On Applied Mathematics 19
  • Ilmumisaeg: 09-Dec-2011
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814390996
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The need of optimal partition arises from many real-world problems involving the distribution of limited resources to many users. The clustering problem, which has recently received a lot of attention, is a special case of optimal partitioning. This book is the first attempt to collect all theoretical developments of optimal partitions, many of them derived by the authors, in an accessible place for easy reference. Much more than simply collecting the results, the book provides a general framework to unify these results and present them in an organized fashion.Many well-known practical problems of optimal partitions are dealt with. The authors show how they can be solved using the theory or why they cannot be. These problems include: allocation of components to maximize system reliability; experiment design to identify defectives; design of circuit card library and of blood analyzer lines; abstraction of finite state machines and assignment of cache items to pages; the division of property and partition bargaining as well as touching on those well-known research areas such as scheduling, inventory, nearest neighbor assignment, the traveling salesman problem, vehicle routing, and graph partitions. The authors elucidate why the last three problems cannot be solved in the context of the theory.
Preface vii
1 Formulation and Examples 1(32)
1.1 Formulation and Classification of Partitions
2(3)
1.2 Formulation and Classification of Partition Problems over Parameter Spaces
5(8)
1.3 Counting Partitions
13(5)
1.4 Examples
18(15)
1.4.1 Assembly of systems
18(1)
1.4.2 Group testing
19(1)
1.4.3 Circuit card library
20(1)
1.4.4 Clustering
21(1)
1.4.5 Abstraction of finite state machines
22(2)
1.4.6 Multischeduling
24(1)
1.4.7 Cache assignment
24(1)
1.4.8 The blood analyzer problem
25(1)
1.4.9 Joint replenishment of inventory
26(1)
1.4.10 Statistical hypothesis testing
27(1)
1.4.11 Nearest neighbor assignment
28(1)
1.4.12 Graph partitions
29(1)
1.4.13 Traveling salesman problem
30(1)
1.4.14 Vehicle routing
30(1)
1.4.15 Division of property
31(1)
1.4.16 The consolidation of farm land
31(2)
2 Sum-Partition Problems over Single-Parameter Spaces: Explicit Solutions 33(42)
2.1 Bounded-Shape Problems with Linear Objective
34(11)
2.2 Constrained-Shape Problems with Schur Convex Objective
45(14)
2.3 Constrained-Shape Problems with Schur Concave Objective: Uniform (over f) Solution
59(16)
3 Extreme Points and Optimality 75(50)
3.1 Preliminaries
76(12)
3.2 Partition Polytopes
88(3)
3.3 Optimality of Extreme Points
91(8)
3.4 Asymmetric Schur Convexity
99(6)
3.5 Enumerating Vertices of Polytopes Using Restricted Edge-Directions
105(7)
3.6 Edge-Directions of Polyhedra in Standard Form
112(6)
3.7 Edge-Directions of Network Polyhedra
118(7)
4 Permutation Polytopes 125(36)
4.1 Permutation Polytopes with Respect to Supermodular Functions - Statement of Results
126(10)
4.2 Permutation Polytopes with Respect to Supermodular Functions - Proofs
136(10)
4.3 Permutation Polytopes Corresponding to Strictly Supermodular Functions
146(5)
4.4 Permutation Polytopes Corresponding to Strongly Supermodular Functions
151(10)
5 Sum-Partition Problems over Single-Parameter Spaces: Polyhedral Approach 161(68)
5.1 Single-Shape Partition Polytopes
162(15)
5.2 Constrained-Shape Partition Polytopes
177(31)
5.3 Supermodularity for Bounded-Shape Sets of Partitions
208(6)
5.4 Partition Problems with Asymmetric Schur Convex Objective: Optimization over Partition Polytopes
214(15)
6 Partitions over Single-Parameter Spaces: Combinatorial Structure 229(64)
6.1 Properties of Partitions
230(6)
6.2 Enumerating Classes of Partitions
236(16)
6.3 Local Invariance and Local Sortability
252(9)
6.4 Localizing Partition Properties: Heredity, Consistency and Sort ability
261(10)
6.5 Consistency and Sortability of Particular Partition-Properties
271(18)
6.6 Extensions
289(4)
7 Partition Problems over Single-Parameter Spaces: Combinatorial Approach 293(48)
7.1 Applying Sort ability to Optimization
295(3)
7.2 Partition Problems with Convex and Schur Convex Objective Functions
298(12)
7.3 Partition Problems with Objective Functions Depending on Part-Sizes
310(16)
7.4 Clustering Problems
326(11)
7.5 Other Problems
337(4)
Bibliography 341(6)
Index 347