Muutke küpsiste eelistusi

E-raamat: Passive Network Synthesis: Advances With Inerter

(Nanjing Univ Of Science & Technology, China), (Jiangnan Univ, China), (City Univ Of Hong Kong, China)
  • Formaat: 256 pages
  • Ilmumisaeg: 03-Oct-2019
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811210891
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 81,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 256 pages
  • Ilmumisaeg: 03-Oct-2019
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811210891
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

After the invention of a new mechanical element called ""inerter"" in 2002, research interest in passive network synthesis has been revived and this field has again become active and essential. The unique compendium highlights the synthesis of passive electrical or mechanical networks, which is motivated by the vibration control based on a new type of mechanical elements named inerter. It introduces important fundamental concepts of passive network synthesis, and presents recent results on this topic. These new results concern mainly the economical realizations of low-degree functions as RLC networks (damper-spring-inerter networks), the synthesis of n-port resistive networks, and the synthesis of low-complexity mechanical networks. They can be directly applied to the optimization and design of various inerter-based mechanical control systems, such as suspension systems, vibration absorbers, building vibration systems, etc. This useful reference text provides important methodologies and results for researchers in the fields of circuit theory, vibration system control, passive systems, control theory, and electrical engineering.

Preface vii
Acknowledgments xi
1 Introduction
1(10)
1.1 Synthesis of Passive Networks
1(3)
1.2 New Research Motivation: Inerter-Based Mechanical Control
4(5)
1.3 Outline of the Book
9(2)
2 Preliminaries of Passive Network Synthesis
11(26)
2.1 Positive-Real Function and Foster Preamble
11(4)
2.2 Synthesis of One-Port Lossless Networks
15(1)
2.3 The Brune Synthesis
16(3)
2.4 The Bott-Duffin Synthesis
19(6)
2.5 The Darlington Synthesis
25(2)
2.6 Graph Theory for Passive Networks
27(6)
2.7 Principle of Duality
33(4)
3 Biquadratic Synthesis of One-Port RLC Networks
37(90)
3.1 Introduction
37(1)
3.2 Basic Notations and Results
38(3)
3.3 A Canonical Biquadratic Impedance
41(2)
3.4 Realizations of Biquadratic Impedances with No More than Four Elements
43(10)
3.4.1 Realizations with No More than Three Elements
43(1)
3.4.2 Realizations with Four Elements
44(9)
3.5 Realization of Biquadratic Impedances as Five-Element Bridge Networks
53(26)
3.5.1 Preliminary Lemmas
54(4)
3.5.2 Five-Element Bridge Networks with Two Reactive Elements of the Same Type
58(9)
3.5.3 Five-Element Bridge Networks with One Inductor and One Capacitor
67(7)
3.5.4 Main Results
74(5)
3.6 Generalized Synthesis without Real-Part Minimization for Biquadratic Impedances
79(10)
3.6.1 Preliminary Lemmas
79(2)
3.6.2 Biquadratic Impedances with Real Zeros and Arbitrary Poles
81(4)
3.6.3 Further Generalization to General Biquadratic Impedances
85(4)
3.7 A Generalized Theorem of Reichert for Biquadratic Minimum Functions
89(17)
3.8 Seven-Element Series-Parallel Realizations of a Specific Class of Biquadratic Impedances
106(21)
3.8.1 Preliminary Lemmas
108(2)
3.8.2 Realizations as Three-Reactive Seven-Element Series-Parallel Networks
110(2)
3.8.3 Realizations as Four-Reactive Seven-Element Series-Parallel Networks
112(9)
3.8.4 Realizations as Five-Reactive Seven-Element Series-Parallel Networks
121(5)
3.8.5 Main Results
126(1)
4 Synthesis of n-Port Resistive Networks
127(40)
4.1 Introduction
127(1)
4.2 A Review of n-Port Resistive Network Synthesis
128(13)
4.2.1 Realizations with n ≤ 3
128(2)
4.2.2 General Properties of n-Port Resistive Networks
130(3)
4.2.3 Realizations of Admittance Matrices with n + 1 Terminals
133(5)
4.2.4 Realizations of Admittance Matrices with More than n 4-1 Terminals
138(3)
4.3 Synthesis of n-Port Resistive Networks Containing 2n Terminals
141(7)
4.3.1 A Necessary and Sufficient Condition for Realization
142(3)
4.3.2 Element Value Expressions
145(2)
4.3.3 Numerical Example
147(1)
4.4 Minimal Realization of Three-Port Resistive Networks
148(19)
4.4.1 Minimal Realization with Four Terminals
150(1)
4.4.2 Realization with at Most Four Elements
151(6)
4.4.3 Realization with Five Elements
157(8)
4.4.4 Some Examples
165(2)
5 Mechanical Synthesis of Low-Complexity One-Port Networks
167(62)
5.1 Introduction
167(5)
5.2 Realization of a Special Class of Admittances with One Damper, One Inerter, and Finite Springs
172(15)
5.2.1 Realizability Conditions when the Impedance of Spring Network Exists
173(9)
5.2.2 Final Realization Results
182(5)
5.3 Realizations of a Special Class of Admittances with Strictly Lower Complexity than Canonical Configurations
187(22)
5.3.1 Cases with Zero Coefficients
188(2)
5.3.2 Preliminary Lemmas
190(2)
5.3.3 Realizations with No More than Four Elements
192(5)
5.3.4 Realizations of Five-Element Damper-Spring Networks
197(3)
5.3.5 Realizations of Five-Element Damper-Spring-Inerter Networks
200(8)
5.3.6 Final Condition
208(1)
5.4 Synthesis of a One-Damper One-Inerter Network Containing No More than Three Springs
209(20)
5.4.1 Realizability Conditions under a Particular Assumption
209(10)
5.4.2 Final Realization Results
219(4)
5.4.3 Some Examples
223(6)
6 Future Outlook
229(2)
Bibliography 231