Muutke küpsiste eelistusi

E-raamat: Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include:

how to use an MPC optimization framework for the mobile vehicle navigation approach;

how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and

  what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal.

The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimization step is continuously repeated to take into account new local sensor measurements. These ongoing changes make the path generated rather robust in comparison with techniques that fix the entire path prior to task execution. In addition to researchers working in MPC, engineers interested in vehicle path planning for a number of purposes: rescued mission in hazardous environments; humanitarian demining; agriculture; and even planetary exploration, will find this SpringerBrief to be instructive and helpful.
1 Introduction
1(1)
1.1 Motivation
1(1)
1.2 Motion Planning Literature
1(4)
1.3 Passivity-Based Control Overview
5(1)
1.4 Passivity-Based Model Predictive Control
6(1)
1.5 Scope of the Work
7(4)
References
8(3)
2 PB/MPC Navigation Planner
11(1)
2.1 Introduction
11(1)
2.2 PB/MPC Optimization Framework
12(5)
2.2.1 Cost Function
13(2)
2.2.2 Optimization Constraints
15(1)
2.2.3 Optimization Techniques
16(1)
2.3 Design of the PB/MPC Motion Planner
17(8)
2.3.1 General Model
17(1)
2.3.2 Energy-Shaping Using a Navigation Function
18(2)
2.3.3 Energy Storage Function
20(1)
2.3.4 Passivity
21(1)
2.3.5 Zero State Observability
21(1)
2.3.6 Stability
22(1)
References
23(2)
3 Examples
25(1)
3.1 Introduction
25(1)
3.2 Flat Terrain
25(5)
3.2.1 Unicycle Vehicle
25(1)
3.2.2 Car-Like Mobile Vehicle with Slippage
26(2)
3.2.3 Simulations
28(2)
3.3 Rough Terrains
30(11)
3.3.1 General Model of a Vehicle in Rough Terrain
31(3)
3.3.2 Energy-Shaping Using a Navigation Function
34(1)
3.3.3 Passivity-Based Stability
35(2)
3.3.4 Simulation
37(2)
References
39(2)
4 Some Limitations and Real-Time Implementation
41(1)
4.1 Introduction
41(1)
4.2 The Worst Case Scenarios on Rough Terrains
41(6)
4.2.1 Unknown Rough Terrain with Obstacles
41(2)
4.2.2 Completely Known Rough Terrain with Obstacles
43(2)
4.2.3 Unknown Rough Terrain Without Obstacles
45(2)
4.3 Real Time Implementation of an MPC Based Motion Planner
47(6)
4.3.1 Simulation Results
48(3)
References
51(2)
5 Conclusion
53(2)
Editors' Biography 55